




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
[全國市級聯(lián)考]湖南省邵陽市重點(diǎn)中學(xué)2023-2024學(xué)年中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.tan30°的值為()A.12 B.32 C.32.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.233.將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第7個圖形的小圓個數(shù)是()A.56 B.58 C.63 D.724.若,則的值為()A.12 B.2 C.3 D.05.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點(diǎn)形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.16.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④7.如圖所示是8個完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.8.如圖,等腰直角三角板ABC的斜邊AB與量角器的直徑重合,點(diǎn)D是量角器上60°刻度線的外端點(diǎn),連接CD交AB于點(diǎn)E,則∠CEB的度數(shù)為()A.60° B.65° C.70° D.75°9.如圖,已知是中的邊上的一點(diǎn),,的平分線交邊于,交于,那么下列結(jié)論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE10.剪紙是我國傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:3a3﹣6a2b+3ab2=_____.12.|-3|=_________;13.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個圖案中的基礎(chǔ)圖形個數(shù)為_______(用含n的式子表示).14.關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是_____.15.如圖,在平面直角坐標(biāo)系xOy中,△DEF可以看作是△ABC經(jīng)過若干次圖形的變化(平移、軸對稱、旋轉(zhuǎn))得到的,寫出一種由△ABC得到△DEF的過程:_____.16.如圖,在同一平面內(nèi),將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.三、解答題(共8題,共72分)17.(8分)解不等式組,并把它的解集表示在數(shù)軸上.18.(8分)講授“軸對稱”時,八年級教師設(shè)計(jì)了如下:四種教學(xué)方法:①教師講,學(xué)生聽②教師讓學(xué)生自己做③教師引導(dǎo)學(xué)生畫圖發(fā)現(xiàn)規(guī)律④教師讓學(xué)生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調(diào)查教學(xué)效果,八年級教師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到全年級8個班420名同學(xué)手中,要求每位同學(xué)選出自己最喜歡的一種.他隨機(jī)抽取了60名學(xué)生的調(diào)查問卷,統(tǒng)計(jì)如圖(1)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)計(jì)算扇形統(tǒng)計(jì)圖中方法③的圓心角的度數(shù)是;(3)八年級同學(xué)中最喜歡的教學(xué)方法是哪一種?選擇這種教學(xué)方法的約有多少人?19.(8分)問題探究(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.20.(8分)已知:如圖,△MNQ中,MQ≠NQ.(1)請你以MN為一邊,在MN的同側(cè)構(gòu)造一個與△MNQ全等的三角形,畫出圖形,并簡要說明構(gòu)造的方法;(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.21.(8分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計(jì)算出a、b、c的值;結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個隊(duì)的決賽成績較好?計(jì)算初中代表隊(duì)決賽成績的方差s初中2,并判斷哪一個代表隊(duì)選手成績較為穩(wěn)定.22.(10分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點(diǎn),交延長線于點(diǎn)(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.23.(12分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個交點(diǎn).(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;(3)求方程的解集(請直接寫出答案).24.在□ABCD,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
直接利用特殊角的三角函數(shù)值求解即可.【詳解】tan30°=33,故選:D【點(diǎn)睛】本題考查特殊角的三角函數(shù)的值的求法,熟記特殊的三角函數(shù)值是解題的關(guān)鍵.2、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點(diǎn):1正多邊形和圓;2.弧長的計(jì)算.3、B【解析】試題分析:第一個圖形的小圓數(shù)量=1×2+2=4;第二個圖形的小圓數(shù)量=2×3+2=8;第三個圖形的小圓數(shù)量=3×4+2=14;則第n個圖形的小圓數(shù)量=n(n+1)+2個,則第七個圖形的小圓數(shù)量=7×8+2=58個.考點(diǎn):規(guī)律題4、A【解析】
先根據(jù)得出,然后利用提公因式法和完全平方公式對進(jìn)行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點(diǎn)睛】本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關(guān)鍵.5、C【解析】
∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點(diǎn)形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點(diǎn):中點(diǎn)四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.6、D【解析】試題分析:首先要理解清楚題意,知道總的客車數(shù)量及總的人數(shù)不變,然后采用排除法進(jìn)行分析從而得到正確答案.解:根據(jù)總?cè)藬?shù)列方程,應(yīng)是40m+10=43m+1,①錯誤,④正確;根據(jù)客車數(shù)列方程,應(yīng)該為,②錯誤,③正確;所以正確的是③④.故選D.考點(diǎn):由實(shí)際問題抽象出一元一次方程.7、A【解析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點(diǎn)睛:本題考查了學(xué)生的思考能力和對幾何體三種視圖的空間想象能力.8、D【解析】
解:連接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故選:D9、C【解析】
根據(jù)相似三角形的判定,采用排除法,逐項(xiàng)分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點(diǎn)睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應(yīng)邊和對應(yīng)角.10、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項(xiàng)A既不是中心對稱圖形,也不是軸對稱圖形,故本選項(xiàng)正確;選項(xiàng)B不是中心對稱圖形,是軸對稱圖形,故本選項(xiàng)錯誤;選項(xiàng)C既是中心對稱圖形,也是軸對稱圖形,故本選項(xiàng)錯誤;選項(xiàng)D既是中心對稱圖形,也是軸對稱圖形,故本選項(xiàng)錯誤.故選A.考點(diǎn):中心對稱圖形;軸對稱圖形.二、填空題(本大題共6個小題,每小題3分,共18分)11、3a(a﹣b)1【解析】
首先提取公因式3a,再利用完全平方公式分解即可.【詳解】3a3﹣6a1b+3ab1,=3a(a1﹣1ab+b1),=3a(a﹣b)1.故答案為:3a(a﹣b)1.【點(diǎn)睛】此題考查多項(xiàng)式的因式分解,多項(xiàng)式分解因式時如果有公因式必須先提取公因式,然后再利用公式法分解因式,根據(jù)多項(xiàng)式的特點(diǎn)用適合的分解因式的方法是解題的關(guān)鍵.12、1【解析】分析:根據(jù)負(fù)數(shù)的絕對值等于這個數(shù)的相反數(shù),即可得出答案.解答:解:|-1|=1.故答案為1.13、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個考點(diǎn):規(guī)律型14、k>【解析】
由方程根的情況,根據(jù)根的判別式可得到關(guān)于k的不等式,則可求得k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不相等的實(shí)根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案為k>.【點(diǎn)睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.15、平移,軸對稱【解析】分析:根據(jù)平移的性質(zhì)和軸對稱的性質(zhì)即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點(diǎn)睛:考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),平移,軸對稱,解題時需要注意:平移的距離等于對應(yīng)點(diǎn)連線的長度,對稱軸為對應(yīng)點(diǎn)連線的垂直平分線,旋轉(zhuǎn)角為對應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線的夾角的大小.16、60°【解析】
先根據(jù)多邊形的內(nèi)角和公式求出正六邊形每個內(nèi)角的度數(shù),然后用正六邊形內(nèi)角的度數(shù)減去正三角形內(nèi)角的度數(shù)即可.【詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【點(diǎn)睛】題考查了多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式為(n-2)×180°是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、不等式組的解是x≥3;圖見解析【解析】
先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式組的解是x≥3,在數(shù)軸上表示為:.【點(diǎn)睛】本題考查了解一元一次不等式組和在數(shù)軸上表示不等式組的解集,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.18、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】
(1)由題意可知:喜歡方法②的學(xué)生有60-6-18-27=9(人);(2)求方法③的圓心角應(yīng)先求所占比值,再乘以360°;(3)根據(jù)條形的高低可判斷喜歡方法④的學(xué)生最多,人數(shù)應(yīng)該等于總?cè)藬?shù)乘以喜歡方法④所占的比例;【詳解】(1)方法②人數(shù)為60?6?18?27=9(人);補(bǔ)條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學(xué)生最多,人數(shù)為(人);【點(diǎn)睛】考查扇形統(tǒng)計(jì)圖,條形統(tǒng)計(jì)圖,用樣本估計(jì)總體,比較基礎(chǔ),難度不大,是中考常考題型.19、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】
(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進(jìn)而得到EF=FG問題即可解決;(2)將△ABD繞著點(diǎn)B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當(dāng)D、C、E三點(diǎn)共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點(diǎn)B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當(dāng)D、C、E三點(diǎn)共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點(diǎn)E作EF⊥BC于點(diǎn)F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點(diǎn)D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).20、(1)作圖見解析;(2)證明書見解析.【解析】
(1)以點(diǎn)N為圓心,以MQ長度為半徑畫弧,以點(diǎn)M為圓心,以NQ長度為半徑畫弧,兩弧交于一點(diǎn)F,則△MNF為所畫三角形.(2)延長DA至E,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B=∠E,AB=CE,根據(jù)等量代換可以求得答案.【詳解】解:(1)如圖1,以N為圓心,以MQ為半徑畫圓??;以M為圓心,以NQ為半徑畫圓??;兩圓弧的交點(diǎn)即為所求.(2)如圖,延長DA至E,使得AE=CB,連結(jié)CE.∵∠ACB+∠CAD=180°,∠DACDAC+∠EAC=180°,∴∠BACBCA=∠EAC.在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,∴△AECEAC≌△BCA(SAS).∴∠B=∠E,AB=CE.∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.考點(diǎn):1.尺規(guī)作圖;2.全等三角形的判定和性質(zhì).21、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊(duì)選手成績比較穩(wěn)定.【解析】
分析:(1)根據(jù)成績表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計(jì)算方法進(jìn)行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計(jì)算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個代表隊(duì)選手的成績較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊(duì)選手成績比較穩(wěn)定.【點(diǎn)睛】本題是一道有關(guān)條形統(tǒng)計(jì)圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計(jì)類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計(jì)算方法是解題的關(guān)鍵.22、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點(diǎn)E,交DC延長線于點(diǎn)F即可;(2)先根據(jù)平行四邊形的性質(zhì)得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據(jù)此可得出結(jié)論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點(diǎn):作圖—基本作圖;平行四邊形的性質(zhì).23、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】試題分析:(1)將B坐標(biāo)代入反比例解析式中求出m的值,即可確定出反比例解析式;將A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于人工智能的2025年智慧交通流量預(yù)測技術(shù)發(fā)展動態(tài)報(bào)告
- 建筑施工安全監(jiān)測方法試題及答案
- 城市交通擁堵治理2025年公交優(yōu)先戰(zhàn)略的實(shí)施效果分析報(bào)告
- 匯和銀行筆試題庫及答案
- 黃巖區(qū)面試真題及答案
- 黃河委面試真題及答案
- 安全工程師考試常識題目試題及答案
- 工業(yè)互聯(lián)網(wǎng)背景下量子通信技術(shù)2025年應(yīng)用前景分析報(bào)告
- 物理學(xué)中的混沌現(xiàn)象研究試題及答案
- 智能建筑系統(tǒng)集成與節(jié)能降耗在體育場館中的應(yīng)用效果研究報(bào)告
- 廣東省珠海市2024-2025學(xué)年高二下學(xué)期期中教學(xué)質(zhì)量檢測英語試題(原卷版+解析版)
- 北京2025年中國環(huán)境監(jiān)測總站招聘(第二批)筆試歷年參考題庫附帶答案詳解
- 美國加征關(guān)稅從多個角度全方位解讀關(guān)稅課件
- “皖南八?!?024-2025學(xué)年高一第二學(xué)期期中考試-英語(譯林版)及答案
- 2025-2030中國安宮牛黃丸行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報(bào)告
- 防洪防汛安全教育知識培訓(xùn)
- 安寧療護(hù)人文關(guān)懷護(hù)理課件
- 2025年廣東廣州中物儲國際貨運(yùn)代理有限公司招聘筆試參考題庫附帶答案詳解
- 商場物業(yè)人員缺失的補(bǔ)充措施
- 黑龍江省齊齊哈爾市龍江縣部分學(xué)校聯(lián)考2023-2024學(xué)年八年級下學(xué)期期中考試物理試題【含答案、解析】
- 《尋常型銀屑病中西醫(yī)結(jié)合診療指南》
評論
0/150
提交評論