![2024 全球6G技術(shù)大會 -10.0A GPT and Communication_第1頁](http://file4.renrendoc.com/view12/M02/14/02/wKhkGWYnuP-Aac1XAAFGLED-sz8611.jpg)
![2024 全球6G技術(shù)大會 -10.0A GPT and Communication_第2頁](http://file4.renrendoc.com/view12/M02/14/02/wKhkGWYnuP-Aac1XAAFGLED-sz86112.jpg)
![2024 全球6G技術(shù)大會 -10.0A GPT and Communication_第3頁](http://file4.renrendoc.com/view12/M02/14/02/wKhkGWYnuP-Aac1XAAFGLED-sz86113.jpg)
![2024 全球6G技術(shù)大會 -10.0A GPT and Communication_第4頁](http://file4.renrendoc.com/view12/M02/14/02/wKhkGWYnuP-Aac1XAAFGLED-sz86114.jpg)
![2024 全球6G技術(shù)大會 -10.0A GPT and Communication_第5頁](http://file4.renrendoc.com/view12/M02/14/02/wKhkGWYnuP-Aac1XAAFGLED-sz86115.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1/92
ExecutiveSummary
Drivenbythejointeffortofkeytechnologiessuchasbigdataandcloudcomputing,asizablenumberofthegenerativepre-trainedtransformer(GPT)largemodels,representedbyChatGPT,haveemerged,showinghighlycreativecontentgenerationcapabilitiesandprovidinghighlyintelligenthuman-computerinteractionexperience.Foralongtime,therehavebeenmanytechnicalproblemsincommunicationthataredifficulttomodelaccuratelyorsolveefficientlyusingtraditionalmethods.Meanwhile,GPTdemonstratesthepotentialtoimprovetheperformanceofinformationcommunicationservicesandintelligentautonomousnetworks.Inaddition,therapiddevelopmentandbroadapplicationsofGPTalsoneedtobesupportedbyacommunicationnetworkwithlargebandwidth,lowlatency,and
highreliability.
Therefore,fromtheperspectiveofcommunicationpractitioners,thiswhitepaperexplorestheinterrelationshipbetweenGPTandcommunication.Firstly,Chapter1sketchestheconcept,developmentprocess,andresearchstatusofGPTlargemodels.Secondly,Chapter2discussesthenewapplicationsofGPTinthecommunicationindustry,andthepositionofGPTinnetworkintelligentautonomy.Thirdly,Chapter3exploreshowthecommunicationnetworksenablethebroadapplicationsofGPT,andgivesatypicalideaoffuturenetworkdesign.Moreover,Chapter4analyzestheprocessofGPTandcommunicationfromindependentevolutiontocollaborativedevelopment,aswellasapplicationsof“6G+GPT”empoweringthedigitaltransformationofindustries.Inaddition,Chapter5pointsoutthefivemostobviousproblemsandchallengesintheintegrationprocessof“GPT+Communication”andprovidessomesolutions.Subsequently,Chapter6putsforwardseveralsuggestionsonhowGPTandthecommunicationindustrycandeveloptogether,aswellasthe
prospectsforthefuture.Finally,Chapter7concludesthiswhitepaper.
2/92
Contents
ExecutiveSummary 1
0Preface 4
1.GPTLeadstheTideofArtificialIntelligenceDevelopment 8
1.1.BasicConceptsofGPT 8
1.1.1GenerativePre-trainedTransformer 8
1.1.2LargeModel 9
1.1.3TransformerArchitecture 11
1.2.DevelopmentHistoryofGPT 13
1.3.CurrentResearchStatusofGPT 15
1.3.1ForeinResearchStatus 16
1.3.2DomesticResearchStatus 18
1.3.3InternationalOrganizations 19
2.GPTEmpowerstheCommunicationIndustry 20
2.1.GPTStimulatesNewApplicationsandReformsinCommunication 20
2.1.1IntelligentCustomerService 22
2.1.2AutomationSimulation 23
2.1.3EnhancedSemanticCommunication 24
2.1.4ReshapingtheFieldofChipDesign 25
2.2.GPTPromotesIntelligentAutonomyinCommunicationNetworks 26
2.2.1GPTReshapesNetworkPlanning 28
2.2.2GPTEnhancesSlicingDeployment 29
2.2.3GPTSimplifiesNetworkOperationsandMaintenance 30
2.2.4GPTAcceleratesNetworkOptimization 32
3.CommunicationNetworksEnableGPTUbiquitousApplications 35
3.1CommunicationNetworksGuaranteetheLandingofGPTApplications 35
3.2FutureNetworkTechnologySupportsGPTApplications 38
3.2.1TypicalApproachestoFutureNetworkDesign 38
3.2.26GNetworkwithNativeSupportforGPTApplications 39
3.3NewNetworkArchitectureSupportsGPTCapabilitySinking 41
3.3.1AdaptiveSlicing 41
3.3.2DistributedLearning 43
3.3.3EdgeIntelligence 43
4.CollaborativeDevelopmentofGPTandCommunication 46
4.1.GPTandCommunicationfromIndependentEvolutiontoCloseIntegration 46
4.1.1TrendsintheIntegrationofGPTandCommunication 46
4.1.2IntegrationofGPTand5GNetworks 47
4.2.IntegrationandDevelopmentofGPTwith6GCommunicationNetworks 48
4.2.1GPTSupportsMassiveDataProcessing 49
4.2.2GPTPromotesNetworkSelf-Service 50
3/92
4.2.3GPTAssistsinNetworkResourceOrchestration 50
4.2.4GPTConstructsNetworkEndogenousSecurity 50
4.3.“6G+GPT”EmpowersIndustryDigitalTransformation 51
4.3.1“6G+GPT”EmpowersSmartIndustry 52
4.3.2“6G+GPT”EmpowersSmartHealthcare 53
4.3.3“6G+GPT”EmpowersSmartTransportation 53
4.3.4“6G+GPT”EmpowersSmartAgriculture 54
4.3.5“6G+GPT”EmpowersSmartHome 55
4.3.6“6G+GPT”EmpowersDigitalEntertainment 55
5.ProblemsFacedbytheDevelopmentof“GPT+Communication”Integration56
5.1.ScarcityofHigh-QualityTrainingDatainCommunicationLeadstoPoorAccuracyand
GeneralizationofSpecializedModels
5
7
5.2.InsufficientOn-DeviceComputingPowerandHardwareResourcesPoseChallengesto
LightweightDeploymentofLargeModels
6
0
5.3.DifficultiesinCloud-Edge-TerminalHeterogeneousNetworkCollaborationLeadtoPoor
StabilityPerformanceofLargeModels
6
2
5.4.ServerInterconnectionBandwidthBottlenecksResultinLongTrainingTimeandLow
InferenceEfficiency
6
5
5.5.LaggingLegalRegulationsRelatedtoLargeModelsResultinHighRisksofSecurity,
Privacy,andEthicalIssues
6
7
6.DevelopmentRecommendationsandFutureProspects 71
6.1.DevelopmentRecommendations 71
6.1.1AcceleratingtheConstructionofAIComputingPowerandProvidingInfrastructure
Support
7
1
6.1.2StrengtheningJointTrainingofSchoolsandEnterprisestoFilltheGapin
InnovativeTalents
7
4
6.1.3AcceleratingtheFormulationofRelevantPoliciesandEstablishingPlatformsto
GuideDevelopment
7
6
6.2.FutureProspects 78
6.2.1BreakthroughsinCoreTechnologiesandSignificantEnhancementofKey
Capabilities
7
8
6.2.2ContinuousImprovementinSystemConstructionandRapidDevelopmentofthe
DigitalEconomy
8
0
6.2.3ExpansionofApplicationScenarios,GradualIntegrationandSymbiosis 82
7.Conclusion 84
References 85
Abbreviations 90
Acknowledgments 92
4/92
0Preface
Inrecentyears,asArtificialIntelligence(AI)technologyhascontinuedtoadvance,particularlyintheareasofreinforcementlearning,largemodels,andgenerativecontent,variousindustrieshavebeenactivelyexploringitsapplications.AttheendofNovember2022,OpenAIreleasedtherapidlypopularizedchatbotChatGPT,whichpossessesastonishingnaturallanguageunderstandingandgenerationcapabilities,attractingwidespreadattentionfromsociety.Subsequently,inMarch2023,thelaunchoftheupgradedversionGPT-4multimodallargemodelreignitedenthusiasmforgenerativeAI,leadingtotheemergenceofnumerouslargemodelsin
quicksuccession.
Sincetheinceptionoftext-basedconversationalinteractions,GPThasprofoundlyimpactedpeople’sproductionandliveswithinafewshortyears,bringingaboutsignificantchanges.Manypeoplebelievethatitwillcontinuetobringdisruptivechanges.BillGatespointedoutthatlargemodelsrepresentthemostrevolutionarytechnologicaladvancementinover40years;NVIDIACEOJensenHuanglikenedtheemergenceoflargemodelstothe“iPhonemoment”ofAI;BaiduCEORobinLiproposedthatlargemodelsarepreparedtochangetheworldatthe2023ZhongguancunForum.FromtheripplescausedbyChatGPTtotheglobalwaveitunleashed,GPTlargemodelshavebecomeoneofthemostdiscussedtopicstoday,signalingacrucialturningpointinthedevelopmentofgenerativeAI;theyear2023
willalsoundoubtedlyleaveasignificantmarkinthehistoryofAIdevelopment.
Asanindustryfacilitatinginformationexchangeandtransmissionamonghumans,nature,andmachines,thecommunicationindustryiscloselyintertwinedwiththedevelopmentoflargemodeltechnology.Thecommunicationindustryitselfhasahighdegreeofdigitalizationandneedstohandlecomplexdata.TheintroductionofGPTcanstreamlineasignificantamountofwork,bringingaboutsignificantcapacityenhancementsforcommunicationoperators,particularlyintherealmsofnetworkoperationsandmaintenance(O&M)andservicedelivery,makingthemmoreintelligent.Intheeraoflargemodels,withtheadvancementofGPTtechnology,thedemandforcomputingpower,data,andalgorithmswillexperienceexplosivegrowth,requiringcommunicationinfrastructuretoprovidesupport.Inthefuture,howGPT
empowersthecommunicationindustryandhowthecommunicationindustrysupports
5/92
GPTarequestionsthateverycommunicationprofessionalshouldearnestly
contemplate.
Therefore,thiswhitepaperisbasedonthedevelopmenthistoryandlatestresearchadvancementsofGPTlargemodels.Ontheonehand,itelaboratesontheinnovativeapplicationsofGPTwithinthecommunicationindustryinspecificscenarios.Ontheotherhand,itinvestigateshowfuturecommunicationnetworksprovidenativesupportforGPTintermsofarchitectureandkeytechnologies.Subsequently,combiningGPTwithcommunication,itproposesaroadmapforthedigitalandintelligenttransformationofkeyindustriesthroughtheircollaborativedevelopment,whilealsopointingouttheproblemsandchallengesintheintegrationanddevelopmentprocess.Inresponsetotheseissues,correspondingdevelopmentrecommendationsandprospectsareprovided.Finally,thewholecontentofthiswhitepaperissummarized.Thecompletechapterstructureofthiswhitepaperisillustrated
inFigure0-1below.
6/92
Figure0-1WhitePaperChapterStructureDiagram
ThiswhitepaperwasjointlyorganizedandauthoredbytheBeijingInstituteofTechnology,withparticipationfrom18entities,includingthethreemajortelecomoperators(ChinaMobile,ChinaUnicom,andChinaTelecom),seventop-tieruniversities,threerenownedenterprises,andfiveleadingresearchinstitutesintheindustry.Spanningovereightmonths,theprocessinvolvedthein-depthparticipationofover50expertsandscholars,fromconductingresearchandtrackingthecutting-edgestatusofGPTlargemodelstoexploringtherelationshipbetweenGPTandcommunication,conceptualizingtheoutlineofthewhitepaper,arrangingspecificchaptercontent,andassigningwritingtasks.Itunderwentmorethantwentyroundsofdiscussionsandrevisionsbeforereachingitscompletion.Duringthisperiod,some
participatingentitiesalsosuccessfullycollaboratedtoapplyforaninternational
7/92
cooperationprojectfromtheMinistryofScienceandTechnologyofthePeople’sRepublicofChina,titled“ResearchonKeyTechnologiesofIntegratedMultidimensionalIntelligentOrchestrationinCloudComputingNetworksBasedon
LargeModels,”therebybettersupportingthecompletionofthiswhitepaper.
WebelievethatAItechnologyisstillinarapidlydevelopingstage,andtheintegrationandmutualsupportbetweenGPTlargemodelsandcommunicationnetworkscancontinuallyexpandinnovativeapplicationscenariosandimproveecosystemdevelopment,thusjointlypromotingtechnologicalprogressandthe
developmentofvariousindustries.
8/92
1.GPTLeadstheTideofArtificialIntelligenceDevelopment
WiththeadvancementofAIanddeeplearningtechnologies,theconceptof“l(fā)argemodels”hascomeintofocus,withChatGPTbeingthemostnotable.OnNovember30,2022,OpenAIofficiallyreleasedtheAIchatbotChatGPT,whichrepresentsArtificialIntelligenceGeneratedContent(AIGC)inthefieldofnaturallanguage.Itspowerfulcapabilitieshavechangedthewaymanypeopleworkandlive,sparkinganewwaveofAIgloballyandattractingwideattentionfrombothindustryandacademia.OnMarch14,2023,theofficiallyreleasedGPT-4underwentfurtherupgrades,significantlyrelaxingtextinputrestrictions,improvingansweraccuracy,andevenenablingdirectinputofimagestogeneratelyrics,creativetexts,etc.,withstylevariations,onceagainshowcasingtheimpactofgenerativeAI.OnNovember7,2023,atthefirst-everOpenAIDevDay,OpenAICEOAltmanshowcasedGPT-4Turbototheworld.AsthelatestversionofGPT,ithasbeenupdatedinareassuchasdataquality,imageprocessing,andspeechconversion,bringingdevelopersandusers
morepossibilitiesandopportunities.
So,whatareChatGPTandGPT?Whatdevelopmentjourneyhavetheyundergone?Andhowshouldtheybeunderstoodandapplied?ThischapterwillstartwithanexplorationofGPTlargemodels,introducingtheirbasicconcepts,developmenthistory,andcurrentresearchstatustoprovidereaderswitha
comprehensiveandin-depthunderstandingofGPT.
1.1.BasicConceptsofGPT
1.1.1GenerativePre-trainedTransformer
GPTstandsforGenerativePre-trainedTransformer,originatingfromthefieldsofdeeplearningandnaturallanguageprocessing(NLP).Overthepastfewyears,withtheadvancementofcomputingpowerandtheemergenceofbigdata,significantbreakthroughshavebeenmadeinthefieldofNLP.GPT,asanintegrationofaseries
ofNLPtechnologies,emergedinsuchacontext,asshowninFigure1-1.
G:Generative.ThisindicatesthatGPThastheabilitytospontaneouslygenerate
content.
P:Pre-trained.ThisindicatesthatGPThasundergonepre-trainingandisready
forimmediateuse.
9/92
T:Transformer.ThisindicatesthatGPTisbasedontheTransformerarchitecture
forlanguagemodeling.
Figure1-1MeaningofGPT
In2017,theGoogleteamfirstproposedtheTransformermodelbasedontheSelf-AttentionMechanism(SAM)andappliedittoNLP[1].OpenAIappliedthistechnologyandreleasedtheearliestgenerationoflargemodels,GPT-1,in2018.Sincethen,theparametersizeofeachgenerationofGPTmodelshasgrownexplosively.TheparametersizeofGPT-2,releasedinFebruary2019,was1.5billion,whileGPT-3,
releasedinMay2020,directlyreached175billion.
ThemeteoricriseofChatGPTwasnotbychance.Itistheresultoftheeffortsofmanypeopleandalongperiodofevolution.TounderstandthedevelopmentofGPT,
oneshouldfirstgrasptheconceptoflargemodelsandTransformerarchitecture.
1.1.2LargeModel
Generally,beforeChatGPT,theAImodelsthatreceivedpublicattentionweremainlyusedforsingletasks.Forexample,“AlphaGo”,whichignitedtheentireAImarketandprompteditsexplosivedevelopment,defeatedGoworldchampionLeeSedolinthe“Manvs.Machine”matchin2016,basedonglobalGogamerecords.However,fundamentally,theseAIdatamodels,whichfocusonspecifictasks,can
onlybecalled“smallmodels”comparedtoChatGPT.
Largemodelsrefertomachinelearningmodelswithhugeparameterscalesandcomplexity.ThetermusuallyreferstoLargeLanguageModels(LLMs).AlanguagemodelisanAImodelthat,aftertraining,canunderstandandgeneratehumanlanguage,and“l(fā)arge”meansthatthemodel’sparametersareverylargerelativeto
“smallmodels.”
AsshowninFigure1-2,thisevolutionarytreetracesthedevelopmenthistoryof
10/92
largemodelsinrecentyears,highlightingsomeofthemostwell-knownmodels,withmodelsonthesamebranchbeingmorecloselyrelated[2].Solidsquaresrepresentopen-sourcemodels,whilehollowsquaresrepresentclosed-sourcemodels.Non-Transformermodelsareshowningray,andamongTransformer-basedmodels,Encodermodelsareinthepinkbranch,Decodermodelsareinthebluebranch,and
Encoder-Decodermodelsareinthegreenbranch.
Figure1-2EvolutionaryTreeofLargeModels
Basedonthisevolutionarytreediagram,wecanconcludethatDecoder-onlymodelsaregraduallybecomingthedominantmodelsinLLMdevelopment,andOpenAIcontinuestomaintainitsleadingpositioninLLM.Metahasmadeoutstandingcontributionstoopen-sourceandLLMresearch,butthereisatrendtowardsclosed-sourcedevelopmentafterthelaunchofGPT-3.Inaddition,manycompaniesandinstitutionsarestillactivelyexploringEncoder-Decodermodels,such
asGoogle.
Currently,majorinstitutionsabroadthatreleaselargemodelsincludeOpenAI,Anthropic,Google,andMeta,withmodelparameterscalesmainlyinthetensandhundredsofbillions.Uptonow,thetopGPTlargemodelsabroadincludeChatGPT,
Claude,Bard,andLlama.Amongthem,afterGooglereleasedthelatestnative
11/92
multimodallargemodel–Gemini,BardwasofficiallyrenamedGemini.
Inthisgloballycompetitivearena,Chinaisalsokeepingpace,developingmanylargemodels,includingTencent’s“Hybrid,”Alibaba’s“TongyiQianwen,”Huawei’s“Pangu,”andChinaMobile’s“Jiutian”series.DatashowsthatasofOctober2023,thereareatotalof254domesticcompanies,universities,andresearchinstituteswithlargemodelsofover1billionparameters,indicatingthatthe“battleofthehundredmodels”istransitioningfromthepreviousstageof“beingborn”toanewstageof“beingused.”Figure1-3showssomeofthelargemodelsdevelopedbydomesticand
foreigncompaniescurrently.
Figure1-3VariousTypesofLargeModels
1.1.3TransformerArchitecture
TheTransformerarchitectureisacrucialfoundationofGPT,whichisaneuralnetworkarchitecturebasedontheSAMandwidelyusedinlargemodelsinthefieldofNLP.ItscorecomponentsaretheEncoderandDecoder.TheEncoderencodesinputtextintoaseriesofvectors,whiletheDecoderdecodesthesevectorsonebyoneintooutputtext.BeforetheintroductionofTransformer,themainstreammodelsintheNLPfieldwereRecurrentNeuralNetworks(RNNs),whichusedrecursionand
convolutionalneuralnetworksforlanguagesequencetransformation.
InJune2017,theGoogleBrainteampublishedapapertitledAttentionisAllYouNeedatthetopAIconferenceNeurIPS,proposinganewnetworkarchitecturecalledTransformer.ItisentirelybasedontheSAM,abandoningrecursionandconvolution.Afteronly12hoursoftrainingoneightP100GraphicsProcessingUnits(GPUs),
Transformerachievedhighertranslationquality[1],showcasingexcellentparallelism
12/92
andbecomingthemostadvancedLLMatthetime.
Figure1-4illustratesthenetworkstructureoftheTransformer.ItconsistsofaseriesofEncodersandDecoders,eachcomprisingmulti-headattentionlayersandall-inclusiveconnectedfeedforwardnetworks.GPT,similartotheDecoderpartof
Transformer,isanautoregressivemodel.
Figure1-4TransformerNetworkStructureDiagram
ThecorecomponentintheTransformeristhemulti-headattentionmechanismmodule,asshowninFigure1-5.Itrequiresthreespecifiedinputs:Q(Query),K(Key),andV(Value).Then,itcalculatesthesimilaritybetweeneachpairofQandKand
weightseachVbasedonthesimilaritytoobtaintheattentioncalculationresult.
13/92
Figure1-5Multi-HeadAttentionMechanismModule
Themulti-headattentionmechanismdoesnotcalculateattentiononlyoncebutdividestheinputintosmallerblocksandthencalculatesthescaleddot-productattentioninparalleloneachsubspace.Thisdesignallowseachattentionmechanismtooptimizedifferentfeaturepartsofeachword,balancingthebiasesthatmayarisefromthesameattentionmechanismandenablingthemodeltocapturesemanticinformationatdifferentlevels,therebyenhancingthemodel’sexpressivepowerand
improvingitseffectiveness.
1.2.DevelopmentHistoryofGPT
14/92
Figure1-6DevelopmentHistoryofGPT
ThedevelopmenthistoryofGPTcanbedividedintotwostages.BeforeChatGPT,theemphasiswasoncontinuouslyincreasingthebasicscaleoflargemodelsandenhancingnewcapabilities.ChatGPTandGPT-4,ontheotherhand,focusmoreonreinforcementlearningfromhumanfeedbacktounderstandhuman
intentandprovidebetterservices,asshowninFigure1-6.
①June2018:OpenAIpublishedthepaperImprovingLanguageUnderstandingbyGenerativePre-trainingandofficiallyreleasedGPT-1[3].
.Basicapproach:Generativepre-training(unsupervised)+downstreamtask
fine-tuning(supervised).
.BasedonaunidirectionalTransformerlanguagemodelwithadecoder
structure,consistingof12layers.
.117millionparameters,5GBtrainingdata,relativelylimitedmodelsizeandcapabilities.
.Contextwindow:512tokens.
②February2019:OpenAIpublishedthepaperLanguageModelsareUnsupervisedMultitaskLearners,proposingthatlanguagemodelsareunsupervisedmultitasklearners,andGPT-2wasborn[4].
.Basicapproach:Removingsupervision,retainingonlyunsupervisedlearning.
.48-layerTransformerstructure.
15/92
.1.5billionparameters,andthetrainingdatavolumeincreasedto40GB.
.Contextwindow:1024tokens.
③May2020:OpenAIpublishedthepaperLanguageModelsareFew-Shot
LearnersandintroducedtheGPT-3model[5].
.Basicapproach:Unsupervisedlearning+in-contextlearning.
.96-layermulti-headTransformer.
.Thenumberofparametersincreasedto175billion,trainedon45TBoftextdata.
.Contextwindow:2048tokens.
④March2022:OpenAIonceagainpublishedthepaperTrainingLanguageModelstoFollowInstructionswithHumanFeedback,introducingReinforcementLearningfromHumanFeedback(RLHF),andlaunchedtheInstructGPTmodel[6].
.Basicapproach:RLHF+fine-tuningtraining.
.Enhancedhumanadjustmentofmodeloutput.
.Resultsrankedinamoreunderstandablemanner.
ChatGPTisaderivativeofInstructGPT,andthetwohavethesamemodelstructureandtrainingmethod.Theonlydifferenceisthewaytheycollectdata.
ChatGPTfocusesmoreoninteractionintheformofdialogue.
⑤March2023:OpenAIreleasedthemultimodalpre-trainedlargemodelGPT-4,
onceagainundergoingsignificantupgrades.
.Basicapproach:Multimodal.
.Contextwindow:8195tokens.
.1.8trillionparameters,13trilliontokentrainingdata.
.Powerfulimagerecognitioncapabilities.
AlthoughthecurrentcapabilitiesofGPT-4inreal-worldscenariosmaynotmatchthoseofhumans,ithasdemonstratedsignificantlysuperiorabilitiesinvariousprofessionalandacademicexams.EvenSATscores(whichcanbeunderstoodasscoresfortheU.S.collegeadmissionstest)ofGPT-4havesurpassedthoseof90%oftesttakers,reachingthelevelrequiredforadmissiontotopuniversitiessuchas
HarvardandStanford.
1.3.CurrentResearchStatusofGPT
OnOctober12,2023,theanalysiscompanystateof.aireleasedtheStateofAI
Report2023.ThereportpointedoutthatOpenAI’sGPT-4remainsthemostpowerful
16/92
LLMglobally.GenerativeAIhaspropelledadvancementsinlifesciencesandhasbeenasaviorfortheventurecapitalindustry[7].Largemodelscontinuetoachievetechnologicalbreakthroughs,especiallyinthefieldoflifesciences,making
significantprogressinmolecularbiologyanddrugdiscovery.
OnDecember14,2023,Natureannouncedtenpeoplein2023.Notably,thechatbotChatGPT,duetoitsdominanceofvariousnewsheadlinesin2023andprofoundimpactonthescientificcommunityandsocietyatlarge,wasincludedasthe11th“non-humanmember”onthelist,recognizingthesignificantchangesbroughtaboutbygenerativeAItoscientificdevelopmentandprogress.Currently,bothdomesticallyandabroad,researchonGPTlargemodelscontinuestodeepen,withmanyinstitutionsstartingtodeveloptheirownlargemodels,andtheapplicationscenariosarebecomingincreasinglydiverse.LargemodelsrepresentedbyChatGPT
haveofficiallyusheredintheeraofAI2.0.
1.3.1ForeinResearchStatus
1UnitedStates
IntheUnitedStates,startupslikeOpenAIandAnthropic,alongwithtechgiantssuchasMicrosoftandGoogle,areleadingtherapiddevelopmentoflargemodels.Majorcompaniesarecontinuallyenhancingtheircompetitiveness.Googleinvested$300millioninAnthropictocounterthethreatposedbyChatGPT,joiningreinforcementlearningfromartificialintelligencefeedback(RLAIF)toreducehumanfeedback.InDecember2022,GooglepublishedapapertitledConstitutionalAI:HarmlessnessfromAIFeedback,introducingtheAImodelClaude.Buzzfeed,aUSnewmediagiant,sawitsstockpricetripleintwodaysafterannouncingplanstouseChatGPTtoassistcontentcreation.Microsoft,asthemaininvestorinOpenAI,isalsousingChatGPTtoenhanceitsproductcompetitivenessandsupplementits
professionalknowledgeandmathematicalshortcomings.
2UnitedKingdom
InApril2023,theUKgovernmentannouncedthatitwouldprovide£100millionininitialfundingtotheteamresponsibleforbuildingtheUKversionofthefoundationalAImodeltoacceleratethedevelopmentofAItechnologyintheUK.TheUKgovernmentstatedthatthisinvestmentwouldbeusedtofundnewteamsjointlybuiltbythegovernmentandtheindustrytoensuretheUK’sAI“sovereign
capabilities.”Thegoalofthisinitiativeistopromotetheapplicationofsafeand
17/92
reliablefoundationalmodelsandstrivetobuildtheUKintoatechnological“superpower”by2030.Inaddition,inresponsetothecontroversyovertheapplicationoflargemodelssuchasGPTinAIethics,theUKhasalsoissuedawhitepaperonregulatorymeasuresandstatedthatregulatoryagencieswillnextissueguidelinesandriskassessmenttemplatestovariousorganizations.Othertoolsandresourceswillbe
usedtoformulatespecificimplementationprincipleswithintheindustry.
③Europe
InFinland,FlowriteisanAI-basedwritingtoolthatcangenerateemails,messages,andothercontentbyinputtingkeywords.IntheNetherlands,theomnichannelcommunicationplatformMessageBirdlauncheditsownAIplatformMessageBirdAI,whichcanunderstandthemeaningofcustomerinformationandrespondaccordingly.BotharebasedonGPT-3.Germanyisalsoconstantlycatchingupinthedevelopmentoflargemodels.Forexample,onMarch7,2023,GooglelaunchedthemultimodallargemodelPaLM-E,jointlydevelopedbytheTechnical
UniversityofBerlinandGoogle.
InFebruary2024,theEuropeangenerativeAIun
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心電圖室獎懲制度的制定意見
- 2025年度汽車維修廠汽車尾氣排放檢測與治理合同
- 金華浙江金華永康市古山鎮(zhèn)人民政府工作人員招聘筆試歷年參考題庫附帶答案詳解
- 金華2025年浙江金華浦江縣縣屬醫(yī)療衛(wèi)生單位招聘護理等專業(yè)人員16人筆試歷年參考題庫附帶答案詳解
- 浙江浙江省疾病預(yù)防控制中心招聘勞務(wù)派遣員工筆試歷年參考題庫附帶答案詳解
- 杭州2025年浙江杭州市教育局所屬事業(yè)單位招聘166人筆試歷年參考題庫附帶答案詳解
- 2025年中國雙層床架市場調(diào)查研究報告
- 2025年中國一次性使用PE手套市場調(diào)查研究報告
- 2025年規(guī)則導(dǎo)線剝皮機項目可行性研究報告
- 2025年罐頭盒蠟燭項目可行性研究報告
- 營銷管理方案中的定價策略與盈利模式
- 2024年西寧城市職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 2024年臨沂市高三一模(學(xué)業(yè)水平等級考試模擬試題)物理試卷
- 廣州獵德大橋三維曲面塔清水混凝土施工技術(shù)
- 我國糖尿病視網(wǎng)膜病變臨床診療指南2022解讀
- Python數(shù)據(jù)挖掘?qū)崙?zhàn)全套教學(xué)課件
- 高級茶藝師技能鑒定(協(xié)會版)備考題庫-下(多選、判斷題匯總)
- 特種設(shè)備作業(yè)人員體檢表(叉車)
- c30混凝土路面施工方案
- 加強師德師風(fēng)建設(shè)學(xué)校師德師風(fēng)警示教育講座培訓(xùn)課件
- 豬飼料購銷合同書
評論
0/150
提交評論