人教版高中數(shù)學知識點_第1頁
人教版高中數(shù)學知識點_第2頁
人教版高中數(shù)學知識點_第3頁
人教版高中數(shù)學知識點_第4頁
人教版高中數(shù)學知識點_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版高中數(shù)學知識點1/1人教版高中數(shù)學知識點全文共1頁,當前為第1頁。人教版高中數(shù)學知識點人教版高中數(shù)學知識點全文共1頁,當前為第1頁。高三會教給我們奮斗,每個人都有無盡的潛力,每一個人都有無窮的提升空間,不經過一年血戰(zhàn),或許我們永久覺察不了自己身上蘊藏的能量。下面我給大家共享一些人教版高中數(shù)學學問,希望能夠關懷大家,歡迎閱讀!

人教版高中數(shù)學學問1

多面體

1、棱柱

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質

(1)側棱都相等,側面是平行四邊形

(2)兩個底面與平行于底面的截面是全等的多邊形

(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

棱錐的性質:

(1)側棱交于一點。側面都是三角形

(2)平行于底面的截面與底面是相像的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

3、正棱錐

正棱錐的定義:假如一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質:

(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

兩個平面的位置關系

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關系:

兩個平面平行沒有公共點;兩個平〔面相〕交有一條公共直線。

a、平行

兩個平面平行的判定定理:假如一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:假如兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

人教版高中數(shù)學知識點全文共2頁,當前為第2頁。(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直

兩平面垂直的定義:兩平面相交,假如所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:假如一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:假如兩個平面互相垂直,那么在一個平

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(留意求出的角與所需要求的角之間的等補關系)。

人教版高中數(shù)學學問2

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

直線和平面的位置關系:

直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

①直線在平面內——有許多個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:假如平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:假如一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

人教版高中數(shù)學知識點全文共3頁,當前為第3頁。直線與平面垂直的判定定理:假如一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

直線與平面垂直的性質定理:假如兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:假如一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:假如平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

直線和平面平行的性質定理:假如一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

人教版高中數(shù)學學問3

1、函數(shù)零點的定義

(1)對于函數(shù))(xfy,我們把方程0)(xf的實數(shù)根叫做函數(shù))(xfy的零點。

(2)方程0)(xf有實根?函數(shù)()yfx的圖像與x軸有交點?函數(shù)()yfx有零點。因此推斷一個函數(shù)是否有零點,有幾個零點,就是推斷方程0)(xf是否有實數(shù)根,有幾個實數(shù)根。函數(shù)零點的求法:解方程0)(xf,所得實數(shù)根就是()fx的零點(3)變號零點與不變號零點

①若函數(shù)()fx在零點0x左右兩側的函數(shù)值異號,則稱該零點為函數(shù)()fx的變號零點。②若函數(shù)()fx在零點0x左右兩側的函數(shù)值同號,則稱該零點為函數(shù)()fx的不變號零點。

③若函數(shù)()fx在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0)()(

2、函數(shù)零點的判定

(1)零點存在性定理:假如函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有()()0fafb,那么,函數(shù))(xfy在區(qū)間,ab內有零點,即存在),(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。

(2)函數(shù))(xfy零點個數(shù)(或方程0)(xf實數(shù)根的個數(shù))確定〔方法〕

①代數(shù)法:函數(shù))(xfy的零點?0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點。

(3)零點個數(shù)確定

0)(xfy有2個零點?0)(xf有兩個不等實根;0)(xfy有1個零點?0)(xf有兩個相等實根;0)(xfy無零點?0)(xf無實根;對于二次函數(shù)在區(qū)間,ab上的零點個數(shù),要結合圖像進行確定.

3、二分法

(1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且()()0fafb的函數(shù)()yfx,通過不斷地把函數(shù)()yfx的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步靠近零點,進而得到零點的近似值的方法叫做二分法;

(2)用二分法求方程的近似解的步驟:

①確定區(qū)間[,]ab,驗證()()0fafb,給定精確度e;

②求區(qū)間(,)ab的中點c;③計算()fc;

(ⅰ)若()0fc,則c就是函數(shù)的零點;

(ⅱ)若()()0fafc,則令bc(此時零點0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時零點0(,)xcb);

④推斷是否到達精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步.

人教版高中數(shù)學知識點全文共4頁,當前為第4頁。人教版高中數(shù)學學問4

函數(shù)的性質

1.函數(shù)的單調性(局部性質)

(1)增函數(shù)

設函數(shù)y=f(x)的定義域為I,假如對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1

假如對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調減區(qū)間.

留意:函數(shù)的單調性是函數(shù)的局部性質;

(2)圖象的特點

假如函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調區(qū)間與單調性的判定方法

(A)定義法:

○1任取x1,x2∈D,且x1

○2作差f(x1)-f(x2);

○3變形(通常是因式分解和配方);

○4定號(即推斷差f(x1)-f(x2)的正負);

○5下結論(指出函數(shù)f(x)在給定的區(qū)間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數(shù)的單調性

復合函數(shù)f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性親熱相關,其規(guī)律:“同增異減”

留意:函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性(整體性質)

(1)偶函數(shù)

一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2).奇函數(shù)

一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.

利用定義推斷函數(shù)奇偶性的步驟:

○1首先確定函數(shù)的定義域,并推斷其是否關于原點對稱;

○2確定f(-x)與f(x)的關系;

○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或借助函數(shù)的圖象判定.

9、函數(shù)的解析表達式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,人教版高中數(shù)學知識點全文共5頁,當前為第5頁。一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:

1)湊配法

2)待定系數(shù)法

3)換元法

4)消參法

10.函數(shù)(小)值(定義見課本p36頁)

○1利用二次函數(shù)的性質(配方法)求函數(shù)的(小)值

○2利用圖象求函數(shù)的(小)值

○3利用函數(shù)單調性的推斷函數(shù)的(小)值:

假如函數(shù)y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有值f(b);

假如函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

例題:

1.求以下函數(shù)的定義域:

⑴⑵

2.設函數(shù)的定義域為,則函數(shù)的定義域為__

3.若函數(shù)的定義域為,則函數(shù)的定義域是

4.函數(shù),若,則=

6.已知函數(shù),求函數(shù),的解析式

7.已知函數(shù)滿足,則=。

8.設是R上的奇函數(shù),且當時,,則當時=

在R上的解析式為

9.求以下函數(shù)的單調區(qū)間:

⑴(2)

10.推斷函數(shù)的單調性并證明你的結論.

11.設函數(shù)推斷它的奇偶性并且求證

人教版高中數(shù)學學問5

集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性,

(2)元素的互異性,

(3)元素的無序性,

3.集合的表示:{…}如:{我校的〔籃球〕隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

?留意:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N-或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的人教版高中數(shù)學知識點全文共6頁,當前為第6頁。方法。{x?R|x-32},{x|x-32}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

1.“包含”關系—子集

留意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A?A

②真子集:假如A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③假如A?B,B?C,那么A?C

④假如A?B同時B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

?有n個元素的集合,含有2n個子集,2n-1個真子集

三、集合的運算

運算類型交集并集補集

定義由全部屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由全部屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

設S是一個集合,A是S的一個子集,由S中全部不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

例題:

1.以下四組對象,能構成集合的是()

A某班全部高個子的學生B的藝術家C一切很大的書D倒數(shù)等于它自身的實數(shù)

2.集合{a,b,c}的真子集共有個

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是.

4.設集合A=,B=,若AB,則的取值范圍是

5.50名學生做的物理、化學兩種試驗,已知物理試驗做得正確得有40人,化學試驗做得正確得有31人,

兩種試驗都做錯得有4人,則這兩種試驗都做對的有人。

6.用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函數(shù)的有關概念

1.函數(shù)的概念:設A、B是非空的數(shù)集,假如依據(jù)某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就人教版高中數(shù)學知識點全文共7頁,當前為第7頁。稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

留意:

1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必需大于零;

(4)指數(shù)、對數(shù)式的底必需大于零且不等于1.

(5)假如函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不行以等于零,

(7)實際問題中的函數(shù)的定義域還要保證明際問題有意義.

相同函數(shù)的推斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致(兩點必需同時具備)

(見課本21頁相關例2)

2.值域:先考慮其定義域

(1)觀看法

(2)配方法

(3)代換法

3.函數(shù)圖象學問歸納

(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.

(2)畫法

A、描點法:

B、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論