




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省泉州市泉港區(qū)重點名校2024年畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD2.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進行抽查.各組隨機抽取轄區(qū)內某三個小區(qū)中的一個進行檢查,則兩個組恰好抽到同一個小區(qū)的概率是()A. B. C. D.3.在學校演講比賽中,10名選手的成績折線統(tǒng)計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數(shù)是5 C.中位數(shù)是90 D.平均分為87.54.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關系是()A. B. C. D.5.的值是A.±3 B.3 C.9 D.816.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.7.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動越小 D.方程無實數(shù)根8.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.9.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.83310.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.12.如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l1分別通過A、B、C三點,且l1∥l2∥l1.若l1與l2的距離為5,l2與l1的距離為7,則Rt△ABC的面積為___________13.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.14.分解因式:x2y﹣6xy+9y=_____.15.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.16.規(guī)定:,如:,若,則=__.三、解答題(共8題,共72分)17.(8分)已知關于的一元二次方程(為實數(shù)且).求證:此方程總有兩個實數(shù)根;如果此方程的兩個實數(shù)根都是整數(shù),求正整數(shù)的值.18.(8分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.19.(8分)先化簡,再求值:,其中a=+1.20.(8分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.21.(8分)甲、乙、丙3名學生各自隨機選擇到A、B2個書店購書.(1)求甲、乙2名學生在不同書店購書的概率;(2)求甲、乙、丙3名學生在同一書店購書的概率.22.(10分)有一項工程,若甲隊單獨做,恰好在規(guī)定日期完成,若乙隊單獨做要超過規(guī)定日期3天完成;現(xiàn)在先由甲、乙兩隊合做2天后,剩下的工程再由乙隊單獨做,也剛好在規(guī)定日期完成,問規(guī)定日期多少天?23.(12分)已知關于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實數(shù)m,判斷方程①的根的情況,并說明理由.24.某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關系如表:x/元…152025…y/件…252015…已知日銷售量y是銷售價x的一次函數(shù).求日銷售量y(件)與每件產(chǎn)品的銷售價x(元)之間的函數(shù)表達式;當每件產(chǎn)品的銷售價定為35元時,此時每日的銷售利潤是多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質;全等三角形的判定.2、C【解析】分析:將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區(qū)的結果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、C【解析】試題分析:根據(jù)折線統(tǒng)計圖可得:最高分為95,眾數(shù)為90;中位數(shù)90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.4、A【解析】
先求出二次函數(shù)的對稱軸,結合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關鍵是熟悉二次函數(shù)的增減性.5、C【解析】試題解析:∵∴的值是3故選C.6、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.7、C【解析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動越小,是假命題;D、方程x2+x+1=0無實數(shù)根,是真命題;故選:C.考點:命題與定理.8、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.9、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.10、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、17【解析】過點B作EF⊥l2,交l1于E,交l1于F,如圖,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB?BC=AB2=17.故答案是17.點睛:本題考查了全等三角形的判定和性質、勾股定理、平行線間的距離,三角形的面積公式,解題的關鍵是做輔助線,構造全等三角形,通過證明三角形全等對應邊相等,再利用三角形的面積公式即可得解.13、.【解析】
連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質,勾股定理的應用等知識;綜合性比較強.14、y(x﹣3)2【解析】本題考查因式分解.解答:.15、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.16、1或-1【解析】
根據(jù)a?b=(a+b)b,列出關于x的方程(2+x)x=1,解方程即可.【詳解】依題意得:(2+x)x=1,整理,得x2+2x=1,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【點睛】用配方法解一元二次方程的步驟:①把原方程化為ax2+bx+c=0(a≠0)的形式;②方程兩邊同除以二次項系數(shù),使二次項系數(shù)為1,并把常數(shù)項移到方程右邊;③方程兩邊同時加上一次項系數(shù)一半的平方;④把左邊配成一個完全平方式,右邊化為一個常數(shù);⑤如果右邊是非負數(shù),就可以進一步通過直接開平方法來求出它的解,如果右邊是一個負數(shù),則判定此方程無實數(shù)解.三、解答題(共8題,共72分)17、(1)證明見解析;(2)或.【解析】
(1)求出△的值,再判斷出其符號即可;(2)先求出x的值,再由方程的兩個實數(shù)根都是整數(shù),且m是正整數(shù)求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個實數(shù)根.(2)∵,∴,.∵方程的兩個實數(shù)根都是整數(shù),且是正整數(shù),∴或.∴或.【點睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關系是解答此題的關鍵.18、(1)證明見解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據(jù)已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據(jù)OG∥BE得出=,即可計算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據(jù)SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點睛】本題考查了相似三角形與全等三角形的判定與性質與切線的性質,解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質與切線的性質.19、【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把a的值代入計算即可求出值.【詳解】原式==,當a=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.20、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為
.【解析】
(1)根據(jù)勾股定理解答即可;(2)設AE=x,根據(jù)全等三角形的性質和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據(jù)勾股定理,得:GF,即PF+PC的最小值為.【點睛】本題考查了四邊形的綜合題,涉及了折疊的性質、勾股定理的應用、相似三角形的判定和性質等知識,知識點較多,難度較大,解答本題的關鍵是掌握設未知數(shù)列方程的思想.21、(1)P=;(2)P=.【解析】試題分析:依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結果,然后根據(jù)概率公式求出該事件的概率.試題解析:(1)甲、乙兩名學生到A、B兩個書店購書的所有可能結果有:
從樹狀圖可以看出,這兩名學生到不同書店購書的可能結果有AB、BA共2種,
所以甲乙兩名學生在不同書店購書的概率P(甲、乙2名學生在不同書店購書)=;(2)甲、乙、丙三名學生AB兩個書店購書的所有可能結果有:
從樹狀圖可以看出,這三名學生到同一書店購書的可能結果有AAA、BBB共2種,
所以甲乙丙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新解讀《CB-T 3930 - 1999船用收信多路耦合器技術條件》新解讀
- 新解讀《CB-T 569-1999船用PN160外螺紋青銅空氣截止閥》新解讀
- 隧道監(jiān)控量測管理措施
- 電纜溝開挖及電纜保護管敷設措施
- 中國自由貿易試驗區(qū)發(fā)展報告2024
- 貴州省畢節(jié)市七星關區(qū)第五教育集團2022-2023學年四年級下學期數(shù)學期末聯(lián)考試卷(含答案)
- 山東省煙臺市2022-2023學年高二下學期7月期末考試化學試題(含答案)
- 汽車傳感器與檢測技術電子教案:汽車GPS導航轉角傳感器
- 服用藥物的禁忌
- 《汽車傳感器與檢測技術》課程整體教學設計
- 奇妙的植物世界
- 《媒介經(jīng)營管理概論》第七章媒介品牌經(jīng)營
- 院感質控整改措施
- 封底混凝土計算
- 附件9:未取得國外國籍的聲明
- 2022年DPI610-615型便攜式壓力校驗儀操作規(guī)程
- 數(shù)學分析試題及答案(兩份)
- 最新四川省教師資格認定體檢表
- 兒童手機設計報告
- 防眩板施工組織設計
- 公路交通工程及安全設施施工指導意見
評論
0/150
提交評論