




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北京市東城區(qū)第二中2023-2024學年高三第六次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.2.在復平面內(nèi),復數(shù)(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導出復數(shù)乘方公式:,已知,則()A. B.4 C. D.163.()A. B. C. D.4.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π5.中,,為的中點,,,則()A. B. C. D.26.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等7.函數(shù)的圖象大致為()A. B.C. D.8.將函數(shù)的圖象向右平移個周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.9.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.設全集集合,則()A. B. C. D.11.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.12.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)二、填空題:本題共4小題,每小題5分,共20分。13.從集合中隨機取一個元素,記為,從集合中隨機取一個元素,記為,則的概率為_______.14.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.15.四面體中,底面,,,則四面體的外接球的表面積為______16.如圖所示梯子結(jié)構(gòu)的點數(shù)依次構(gòu)成數(shù)列,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.18.(12分)已知函數(shù)與的圖象關(guān)于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.19.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設,求數(shù)列的前項和.20.(12分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數(shù))與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數(shù)的值.21.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且22.(10分)某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.理科方向文科方向總計男110女50總計(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。2、D【解析】
根據(jù)復數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數(shù)的新定義題目、同時考查了復數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復數(shù)化為棣莫弗定理形式,屬于基礎題.3、D【解析】
利用,根據(jù)誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎題.4、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數(shù)的圖像變換.5、D【解析】
在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.6、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.7、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.8、D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關(guān)于軸對稱,所以,即,所以當時,有最小正值為.故選:D【點睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.9、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應用,屬于基礎題10、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.11、C【解析】
直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運用,屬于中檔題.12、C【解析】
利用導數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出隨機抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機取一個元素,記為,從集合中隨機取一個元素,記為,則的事件數(shù)為9個,即為,,,其中滿足的有,,,共有8個,故的概率為.【點睛】本題考查了古典概型的計算,解題的關(guān)鍵是準確列舉出所有事件數(shù).14、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.15、【解析】
由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關(guān)鍵,屬于中檔題.16、【解析】
根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應用,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.18、(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導數(shù)求出單調(diào)性,即可得出的值;(2)設,求導,求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構(gòu)造函數(shù),當時,,當時,,且,當時,單調(diào)遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當時,.所以正整數(shù)的最小值為2.【點睛】本題考查導數(shù)的幾何意義和利用導數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計算能力.19、(1);(2).【解析】
(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設數(shù)列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.20、(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設,兩點對應的參數(shù)為,,則,,再根據(jù),即,利用韋達定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設,兩點對應的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點睛】本題主要考查參數(shù)方程、極坐標方程、直角坐標方程的轉(zhuǎn)化和直線參數(shù)方程的應用,還考查了運算求解的能力,屬于中檔題.21、(1)x22+y2【解析】
(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距離公式求得原點到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.【詳解】(1)因為兩焦點與短軸的一個頂點的連線構(gòu)成等腰直角三角形,所以a=2又由右準線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設B(x1,y1∵ON=6因為點B,N都在橢圓上,所以x122+y12所以OB=x②由原點O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因為S=2λ(1-λ)在[并且當λ=45時,S=225
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公章合同范本模板
- ui設計兼職合同范本
- 上游電子銷售合同范本
- 住宅抵押合同范本
- 借貸咨詢合同范本
- 農(nóng)村房車銷售合同范本
- 農(nóng)用器材采購合同范本
- 中美二十天然氣合同范例
- 個人售賣二手車合同范本
- 出納公司合同范本
- 新能源汽車驅(qū)動電機及控制系統(tǒng)檢修課件 學習情境1:驅(qū)動電機的認知
- 2024年采購部年終總結(jié)
- 人教版(PEP)五年級英語下冊第一單元測試卷-Unit 1 My day 含答案
- 打深水井施工方案
- 企業(yè)名稱預先核準通知書
- 統(tǒng)籌管理方案
- 建筑工程安全文明施工標準化圖集(附圖豐富)
- Unit 1 Travel教案-2023-2024學年高一下學期 中職英語高教版(2023修訂版)基礎模塊2
- DB3206T 1083-2024機關(guān)會議服務人員操作技術(shù)規(guī)范
- 習作《我的家人 》教案-2024-2025學年統(tǒng)編版語文四年級上冊
- 眼鏡學智慧樹知到答案2024年溫州醫(yī)科大學
評論
0/150
提交評論