甘肅省金昌市金川區(qū)寧遠中學2024屆中考聯(lián)考數(shù)學試題含解析_第1頁
甘肅省金昌市金川區(qū)寧遠中學2024屆中考聯(lián)考數(shù)學試題含解析_第2頁
甘肅省金昌市金川區(qū)寧遠中學2024屆中考聯(lián)考數(shù)學試題含解析_第3頁
甘肅省金昌市金川區(qū)寧遠中學2024屆中考聯(lián)考數(shù)學試題含解析_第4頁
甘肅省金昌市金川區(qū)寧遠中學2024屆中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省金昌市金川區(qū)寧遠中學2024屆中考聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.2.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.3.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費項目

里程費

時長費

遠途費

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費由里程費、時長費、遠途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(nèi)(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘4.下列算式中,結(jié)果等于a5的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.a(chǎn)5÷a D.(a2)35.一個正多邊形的內(nèi)角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.66.下列計算正確的是()A.a(chǎn)4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b27.函數(shù)(為常數(shù))的圖像上有三點,,,則函數(shù)值的大小關(guān)系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y18.的相反數(shù)是()A. B.- C. D.9.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°10.已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;

當時,;,其中錯誤的結(jié)論有A.②③ B.②④ C.①③ D.①④11.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°12.下列運算正確的是()A.a(chǎn)?a2=a2 B.(ab)2=ab C.3﹣1= D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關(guān)于x的方程kx2+2x﹣1=0有實數(shù)根,則k的取值范圍是_____.14.用換元法解方程,設(shè)y=,那么原方程化為關(guān)于y的整式方程是_____.15.如果不等式組的解集是x<2,那么m的取值范圍是_____16.函數(shù)y=117.2017年端午小長假的第一天,永州市共接待旅客約275000人次,請將275000用科學記數(shù)法表示為___________________.18.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機抽取一張,抽到中心對稱圖形的概率是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當PD∥AB時,求BP的長.20.(6分)某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,A,B兩種產(chǎn)品每瓶的成本和利潤如表,設(shè)每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.(1)請求出y關(guān)于x的函數(shù)關(guān)系式;(2)如果該廠每天至少投入成本26400元,那么每天至少獲利多少元?(3)該廠每天生產(chǎn)的A,B兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對A產(chǎn)品進行讓利,每瓶利潤降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤是多少?AB成本(元/瓶)5035利潤(元/瓶)201521.(6分)如圖,四邊形ABCD中,E點在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.22.(8分)如圖,在平面直角坐標系xOy中,函數(shù)的圖象與直線y=2x+1交于點A(1,m).(1)求k、m的值;(2)已知點P(n,0)(n≥1),過點P作平行于y軸的直線,交直線y=2x+1于點B,交函數(shù)的圖象于點C.橫、縱坐標都是整數(shù)的點叫做整點.①當n=3時,求線段AB上的整點個數(shù);②若的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個整點,直接寫出n的取值范圍.23.(8分)在正方形ABCD中,M是BC邊上一點,且點M不與B、C重合,點P在射線AM上,將線段AP繞點A順時針旋轉(zhuǎn)90°得到線段AQ,連接BP,DQ.(1)依題意補全圖1;(2)①連接DP,若點P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點P,Q,C恰好在同一條直線上,則BP與AB的數(shù)量關(guān)系為:.24.(10分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.25.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A(4,3),與y軸的負半軸交于點B,連接OA,且OA=OB.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)過點P(k,0)作平行于y軸的直線,交一次函數(shù)y=2x+n于點M,交反比例函數(shù)的圖象于點N,若NM=NP,求n的值.26.(12分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內(nèi)一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.27.(12分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設(shè)運動時間為ts,解答下列問題:(發(fā)現(xiàn))(1)的長度為多少;(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題解析:設(shè)小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.2、B【解析】

解:過點B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.3、D【解析】

設(shè)小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據(jù)計價規(guī)則計算出小王的車費和小張的車費,建立方程求解.【詳解】設(shè)小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【點睛】本題考查列方程解應用題,讀懂表格中的計價規(guī)則是解題的關(guān)鍵.4、B【解析】試題解析:A、a2與a3不能合并,所以A選項錯誤;B、原式=a5,所以B選項正確;C、原式=a4,所以C選項錯誤;D、原式=a6,所以D選項錯誤.故選B.5、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設(shè)這個正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內(nèi)角和.解題關(guān)鍵點:熟記多邊形內(nèi)角和公式.6、B【解析】分析:根據(jù)合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關(guān)鍵.7、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內(nèi)y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.8、C【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.9、B【解析】

根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).10、C【解析】

①根據(jù)圖象的開口方向,可得a的范圍,根據(jù)圖象與y軸的交點,可得c的范圍,根據(jù)有理數(shù)的乘法,可得答案;

②根據(jù)自變量為-1時函數(shù)值,可得答案;

③根據(jù)觀察函數(shù)圖象的縱坐標,可得答案;

④根據(jù)對稱軸,整理可得答案.【詳解】圖象開口向下,得a<0,

圖象與y軸的交點在x軸的上方,得c>0,ac<,故①錯誤;

②由圖象,得x=-1時,y<0,即a-b+c<0,故②正確;

③由圖象,得

圖象與y軸的交點在x軸的上方,即當x<0時,y有大于零的部分,故③錯誤;

④由對稱軸,得x=-=1,解得b=-2a,

2a+b=0

故④正確;

故選D.【點睛】考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.11、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.12、C【解析】

根據(jù)同底數(shù)冪的乘法法則對A進行判斷;根據(jù)積的乘方對B進行判斷;根據(jù)負整數(shù)指數(shù)冪的意義對C進行判斷;根據(jù)二次根式的加減法對D進行判斷.【詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.也考查了整式的運算.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、k≥-1【解析】

首先討論當時,方程是一元一次方程,有實數(shù)根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結(jié)合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數(shù)根;當時,方程是一元二次方程,解得:且.綜上所述,關(guān)于的方程有實數(shù)根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.14、6y2-5y+2=0【解析】

根據(jù)y=,將方程變形即可.【詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【點睛】此題考查了換元法解分式方程,利用了整體的思想,將方程進行適當?shù)淖冃问墙獗绢}的關(guān)鍵.15、m≥1.【解析】分析:先解第一個不等式,再根據(jù)不等式組的解集是x<1,從而得出關(guān)于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數(shù)處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.16、x>1【解析】試題分析:二次根號下的數(shù)為非負數(shù),二次根式才有意義,故需要滿足x-1?0?x?1考點:二次根式、分式有意義的條件點評:解答本題的關(guān)鍵是熟練掌握二次根號下的數(shù)為非負數(shù),二次根式才有意義;分式的分母不能為0,分式才有意義.17、1.75×2【解析】試題解析:175000=1.75×2.考點:科學計數(shù)法----表示較大的數(shù)18、【解析】

在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機抽取一張,抽到中心對稱圖形的概率為:.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質(zhì)即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識,把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關(guān)鍵,證到∠BAP=∠C進而得到△BAP∽△BCA是解決第(2)小題的關(guān)鍵.20、(1)y=5x+9000;(2)每天至少獲利10800元;(3)每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤為9625元.【解析】試題分析:(1)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;利潤=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的利潤+B種品牌白酒瓶數(shù)×B種品牌白酒一瓶的利潤,列出函數(shù)關(guān)系式;

(2)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;成本=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的成本+B種品牌白酒瓶數(shù)×B種品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利潤.(3)列出y與x的關(guān)系式,求y的最大值時,x的值.試題解析:(1)y=20x+15(600-x)=5x+9000,∴y關(guān)于x的函數(shù)關(guān)系式為y=5x+9000;(2)根據(jù)題意,得50x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y隨x的增大而增大,∴當x=360時,y有最小值為10800,∴每天至少獲利10800元;(3),∵,∴當x=250時,y有最大值9625,∴每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤為9625元.21、證明過程見解析【解析】

由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再結(jié)合條件可證明△ABC≌△DEC.【詳解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).22、(1)m=3,k=3;(2)①線段AB上有(1,3)、(2,5)、(3,7)共3個整點,②當2≤n<3時,有五個整點.【解析】

(1)將A點代入直線解析式可求m,再代入,可求k.(2)①根據(jù)題意先求B,C兩點,可得線段AB上的整點的橫坐標的范圍1≤x≤3,且x為整數(shù),所以x取1,2,3.再代入可求整點,即求出整點個數(shù).②根據(jù)圖象可以直接判斷2≤n<3.【詳解】(1)∵點A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵點A(1,3)在函數(shù)的圖象上,∴k=3.(2)①當n=3時,B、C兩點的坐標為B(3,7)、C(3,1).∵整點在線段AB上∴1≤x≤3且x為整數(shù)∴x=1,2,3∴當x=1時,y=3,當x=2時,y=5,當x=3時,y=7,∴線段AB上有(1,3)、(2,5)、(3,7)共3個整點.②由圖象可得當2≤n<3時,有五個整點.【點睛】本題考查反比例函數(shù)和一次函數(shù)的交點問題,待定系數(shù)法,以及函數(shù)圖象的性質(zhì).關(guān)鍵是能利用函數(shù)圖象有關(guān)解決問題.23、(1)詳見解析;(1)①詳見解析;②BP=AB.【解析】

(1)根據(jù)要求畫出圖形即可;(1)①連接BD,如圖1,只要證明△ADQ≌△ABP,∠DPB=90°即可解決問題;②結(jié)論:BP=AB,如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【詳解】(1)解:補全圖形如圖1:(1)①證明:連接BD,如圖1,∵線段AP繞點A順時針旋轉(zhuǎn)90°得到線段AQ,∴AQ=AP,∠QAP=90°,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:結(jié)論:BP=AB.理由:如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【點睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)變換、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸24、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.25、20(1)y=2x-5,y=;(2)n=-4或n=1【解析】

(1)由點A坐標知OA=OB=5,可得點B的坐標,由A點坐標可得反比例函數(shù)解析式,由A、B兩點坐標可得直線AB的解析式;

(2)由k=2知N(2,6),根據(jù)NP=NM得點M坐標為(2,0)或(2,12),分別代入y=2x-n可得答案.【詳解】解:(1)∵點A的坐標為(4,3),

∴OA=5,

∵OA=OB,

∴OB=5,

∵點B在y軸的負半軸上,

∴點B的坐標為(0,-5),

將點A(4,3)代入反比例函數(shù)解析式y(tǒng)=中,

∴反比例函數(shù)解析式為y=,

將點A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,

∴一次函數(shù)解析式為y=2x-5;

(2)由(1)知k=2,

則點N的坐標為(2,6),

∵NP=NM,

∴點M坐標為(2,0)或(2,12),

分別代入y=2x-n可得:n=-4或n=1.【點睛】本題主要考查直線和雙曲線的交點問題,解題的關(guān)鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及分類討論思想的運用.26、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當點D在y軸左側(cè)時,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點D(m,n)是線段AB的“等長點”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當點D在y軸右側(cè)時,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點D(m,n)是線段AB的“等長點”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論