版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省吉安市重點高中2024屆高三第二次聯(lián)考數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件2.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.33.已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A.2 B. C.3 D.44.已知復數(shù)滿足,其中是虛數(shù)單位,則復數(shù)在復平面中對應的點到原點的距離為()A. B. C. D.5.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.6.下列不等式正確的是()A. B.C. D.7.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.28.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-39.已知展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-8110.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則11.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區(qū)間為()A. B.C. D.12.近年來,隨著網(wǎng)絡的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調查在校大學生使用的主要用途,隨機抽取了名大學生進行調查,各主要用途與對應人數(shù)的結果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),其中且,則______________.14.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.15.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____16.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)在直角坐標系中,直線的參數(shù)方程為.(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.20.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經過點,求直線被曲線截得的線段的長.21.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.22.(10分)曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,考查理解辨析能力與運算求解能力,屬于基礎題.2、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.3、C【解析】
根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.4、B【解析】
利用復數(shù)的除法運算化簡z,復數(shù)在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數(shù)在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數(shù)的除法運算,模長公式和幾何意義,考查了學生概念理解,數(shù)學運算,數(shù)形結合的能力,屬于基礎題.5、C【解析】
首先根據(jù)垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關系可構造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球球心的位置.6、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質,以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.8、B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數(shù)的幾何意義,意在考查學生對這些知識的理解掌握水平.9、B【解析】
根據(jù)二項式系數(shù)的性質,可求得,再通過賦值求得以及結果即可.【詳解】因為展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數(shù)的性質,以及通過賦值法求系數(shù)之和,屬綜合基礎題.10、D【解析】
利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.11、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調遞增區(qū)間得出函數(shù)的單調遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.12、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調查的總人數(shù)為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關命題真假的判斷,計算出相應的頻數(shù)與頻率是關鍵,考查數(shù)據(jù)處理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點睛】本題主要考查了二項式定理的應用,以及導數(shù)的運算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準確求解導數(shù)是解答的關鍵,著重考查了推理與運算能力.14、20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構成公差為的等差數(shù)列,偶數(shù)項構成公比為的等比數(shù)列,則;.當時,,.當時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關鍵.15、2025【解析】
利用賦值法,結合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎題.16、【解析】
首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】
(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應用,屬于中檔題.18、(1)(2)①2②期望值為X900600300100P【解析】
(1)一件手工藝品質量為B級的概率為.(2)①由題意可得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質量為A級的概率為,一件手工藝品質量為B級的概率為,一件手工藝品質量為C級的概率為,一件手工藝品質量為D級的概率為,所以X的分布列為X900600300100P則期望為.19、(1),.(2)【解析】
(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據(jù)點到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關鍵是掌握極坐標化直角坐標的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.20、(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經過點,可得的值,再將直線的參數(shù)方程代入曲線的標準方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園暑期荷花課程設計
- 智能濕度傳感器課程設計
- 2024外墻涂料產品出口退運與理賠合同范本3篇
- 2024年度汽車制造公司員工技能培訓與勞動合同3篇
- 新手家長家庭教育技巧講座匯報
- 春夏潮流穿搭課程設計
- 臺式料理課程設計
- 金字塔結構在銀行業(yè)的運用分析
- 體育旅游行業(yè)人才需求與培養(yǎng)
- 教育行業(yè)旅游中介事務所非訴訟代理服務合同
- 工程電磁場(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東航空學院
- 提高護理文書書寫規(guī)范率PDCA
- 汽車電器DFMEA-空調冷暖裝置
- 國開可編程控制器應用形考實訓任務二
- 生命健康教育智慧樹知到期末考試答案章節(jié)答案2024年溫州醫(yī)科大學
- 全國養(yǎng)老護理職業(yè)技能大賽養(yǎng)老護理員賽項考試題庫-下(判斷題)
- 胸痛中心關鍵質控指標及質量改進計劃
- 2024年中考作文十二大高頻熱點主題4-青春夢想(素材)
- 2024年四川省網(wǎng)格員招聘理論考試復習題庫(含答案)
- 中建測評2024二測題庫及答案
- 低代碼開發(fā)智慧樹知到期末考試答案2024年
評論
0/150
提交評論