




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年寧夏回族自治區(qū)銀川市長慶高級中學(xué)高三第二次調(diào)研數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨(dú)立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則()A. B. C. D.2.設(shè)全集,集合,,則()A. B. C. D.3.設(shè)全集,集合,,則()A. B. C. D.4.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.5.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.46.計算等于()A. B. C. D.7.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.8.已知,,,,則()A. B. C. D.9.函數(shù)圖象的大致形狀是()A. B.C. D.10.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個11.已知向量,則向量在向量方向上的投影為()A. B. C. D.12.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).14.已知雙曲線的左右焦點分別關(guān)于兩漸近線對稱點重合,則雙曲線的離心率為_____15.若向量與向量垂直,則______.16.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求函數(shù)的最大值.18.(12分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設(shè)點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標(biāo).19.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.20.(12分)已知函數(shù),,設(shè).(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導(dǎo)函數(shù))21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.22.(10分)小麗在同一城市開的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調(diào)劑1人到該店維持營業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(2)設(shè)營業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨(dú)立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.2、D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、B【解析】
可解出集合,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【詳解】,,則,因此,.故選:B.【點睛】本題考查補(bǔ)集和交集的運(yùn)算,涉及一元二次不等式的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時,,在上單調(diào)遞減,當(dāng)時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當(dāng)時,,在遞減;當(dāng)時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.5、B【解析】
解出,分別代入選項中的值進(jìn)行驗證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.6、A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導(dǎo)公式,考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.7、A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點,∴,∴,,解得,又,解得,當(dāng)k=0時,解,當(dāng)k=-1時,,可得,.故答案為:A.【點睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.8、D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.9、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點睛】本題考查函數(shù)表達(dá)式判斷函數(shù)圖像,屬于中檔題.10、B【解析】
由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運(yùn)算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運(yùn)算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.11、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.12、C【解析】
根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個選項可得結(jié)果.【詳解】對于,當(dāng)為內(nèi)與垂直的直線時,不滿足,錯誤;對于,設(shè),則當(dāng)為內(nèi)與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設(shè),則當(dāng)為內(nèi)與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學(xué)生對于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,然后利用復(fù)數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.14、【解析】
雙曲線的左右焦點分別關(guān)于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關(guān)于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學(xué)生的計算能力,確定一條漸近線的斜率為1是關(guān)鍵,屬于基礎(chǔ)題.15、0【解析】
直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計算能力.16、【解析】
計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學(xué)生的計算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
試題分析:由柯西不等式得試題解析:因為,所以.等號當(dāng)且僅當(dāng),即時成立.所以的最大值為.考點:柯西不等式求最值18、(1);(2)證明見解析,或【解析】
(1)根據(jù)點到直線的公式結(jié)合二次函數(shù)的性質(zhì)即可求出;(2)設(shè),,,,表示出直線,的方程,利用表示出,,即可求定點的坐標(biāo).【詳解】(1)設(shè)拋物線上點的坐標(biāo)為,則,時取等號),則拋物線上的點到直線距離的最小值;(2)設(shè),,,,,,直線,的方程為分別為,,由兩條直線都經(jīng)過點點得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點,是直線上的動點,時,,時,,,或.【點睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過定點的解法,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結(jié)合正弦定理可得到,利用,,可得到,進(jìn)而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運(yùn)用,考查了三角形的面積公式,考查了學(xué)生分析問題、解決問題的能力,屬于基礎(chǔ)題.20、(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見解析【解析】
(1)求出導(dǎo)函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計算,代入后可得結(jié)論.【詳解】解:,函數(shù)的定義域為,.(1)當(dāng)時,,由得,由得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【點睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的運(yùn)算、方程根的知識.在可導(dǎo)函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.21、(1)(2)【解析】
(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時,線段取得最小值,利用幾何法求弦長即可.(2)當(dāng)點與點不重合時,設(shè),由利用向量的數(shù)量積等于可求解,最后驗證當(dāng)點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點的直線,易知在圓內(nèi),當(dāng)時,線段長最小為當(dāng)點與點不重合時,設(shè),化簡得當(dāng)點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標(biāo)與普通方程的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030全球與中國松子油產(chǎn)品行業(yè)發(fā)展現(xiàn)狀及趨勢預(yù)測研究報告
- 區(qū)塊鏈技術(shù)在醫(yī)療行業(yè)的知識產(chǎn)權(quán)挑戰(zhàn)及應(yīng)對策略
- 企業(yè)健康信息化的探索與實踐
- 化學(xué)實驗中的氣壓變化省公開課一等獎全國示范課微課金獎?wù)n件
- 2025年河南種業(yè)集團(tuán)招聘7人筆試參考題庫附帶答案詳解
- 創(chuàng)新者之路健康管理系統(tǒng)的優(yōu)化與實踐
- 2025至2030中國金融中介服務(wù)行業(yè)運(yùn)營模式及前景動態(tài)研究報告
- 普通員工轉(zhuǎn)正工作總結(jié)分享(30篇)
- 生產(chǎn)車間試用期工作總結(jié)900字(3篇)
- 百草枯中毒的治療
- T-NKFA 015-2024 中小學(xué)午休課桌椅
- 課題開題報告:推進(jìn)家校社協(xié)同育人研究
- 拒絕校園霸凌守護(hù)美好校園
- 不要慌太陽下山有月光二部合唱簡譜
- 2025春新七年級道德與法治下冊全冊知識點
- Unit 9 Active learning 教學(xué)設(shè)計-2023-2024學(xué)年高中英語北師大版(2019)必修第三冊
- 漁場基地建設(shè)實施方案
- 《食源性病原體》課件
- 《藥品泡罩包裝應(yīng)用指南(征求意見稿)》
- Unit 6 Beautiful landscapes Integration 說課稿 -2024-2025學(xué)年譯林版英語七年級下冊001
- 2025年國家電投集團(tuán)招聘筆試參考題庫含答案解析
評論
0/150
提交評論