版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省冬季高中學(xué)高三壓軸卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.2.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.3.已知函數(shù),存在實數(shù),使得,則的最大值為()A. B. C. D.4.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.5.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.6.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.7.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③8.函數(shù)()的圖像可以是()A. B.C. D.9.集合,,則=()A. B.C. D.10.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.11.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.12.已知是邊長為的正三角形,若,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.14.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.15.已知數(shù)列滿足對任意,,則數(shù)列的通項公式__________.16.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè),函數(shù).(1)當時,求在內(nèi)的極值;(2)設(shè)函數(shù),當有兩個極值點時,總有,求實數(shù)的值.18.(12分)已知函數(shù).(1)若是函數(shù)的極值點,求的單調(diào)區(qū)間;(2)當時,證明:19.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.20.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.21.(12分)已知函數(shù)(是自然對數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數(shù)取極值時對應(yīng)的自變量的值).22.(10分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.2、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.3、A【解析】
畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運算的能力,屬于較難題.4、D【解析】
設(shè)點,由,得關(guān)于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設(shè)點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.5、C【解析】
建立坐標系,寫出相應(yīng)的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.6、D【解析】
由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.7、B【解析】
根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.8、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.9、C【解析】
先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較?。?0、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.11、A【解析】
利用數(shù)列的遞推關(guān)系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項公式的求法,考查計算能力.12、A【解析】
由可得,因為是邊長為的正三角形,所以,故選A.二、填空題:本題共4小題,每小題5分,共20分。13、(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間14、【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關(guān)鍵在于恰當?shù)貙ο蛄窟M行轉(zhuǎn)換,便于計算解題.15、【解析】
利用累加法求得數(shù)列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數(shù)列的通項公式,屬于基礎(chǔ)題.16、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數(shù).因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學(xué)生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.18、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】
(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號即可判斷單調(diào)區(qū)間.(2)當時,.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對數(shù)式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域為,在單調(diào)遞增,而,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,此時是函數(shù)的極小值點,的遞減區(qū)間為,遞增區(qū)間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當,單調(diào)遞減,當,單調(diào)遞增,因此當時,函數(shù)取得最小值,,,故,從而,即,結(jié)論成立.【點睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)證明不等式恒成立,構(gòu)造函數(shù)法的綜合應(yīng)用,屬于難題.19、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.20、(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設(shè)平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.21、(1);(2);(3).【解析】
(1)利用導(dǎo)數(shù)的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當時,,所以切線方程為,即.(2),.因為函數(shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實數(shù)的取值范圍是.(3).因為函數(shù)在區(qū)間上有兩個極值點,所以方程在上有兩不等實根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當和時,單調(diào)遞增,當時,單調(diào)遞減,是極值點,此時令,則,所以在上單調(diào)遞減,所以.因為恒成立,所以.若,取,則,所以.令,則,.當時,;當時,.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點,不等式恒成立等知識,是一道難題.22、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公樓屋頂綠化養(yǎng)護合同
- 電力工程翻斗車租賃協(xié)議
- 科技園區(qū)外墻保溫施工合同模板
- 勞務(wù)服務(wù)市場信息共享平臺
- 土方作業(yè)挖掘合同
- 國際航空港硬裝施工合同
- 餐飲場所消防器材檢修服務(wù)承諾書
- 體育賽事服務(wù)合同執(zhí)行細則
- 2024年醫(yī)療信息化服務(wù)協(xié)議
- 藝術(shù)品退貨管理規(guī)章
- 山東德州財金投資控股集團有限公司招聘考試真題2022
- 《工業(yè)機器人應(yīng)用與維護》專業(yè)人才培養(yǎng)方案
- 《馬克思主義發(fā)展史》第二章剩余價值學(xué)說的創(chuàng)立和馬課件
- 高中語文人教版高中必修文言文定語后置
- 傳統(tǒng)孝道人物虞舜
- 確定積極分子會議記錄范文七篇
- 長江三峽水利樞紐可行性報告
- 江蘇省某高速公路結(jié)構(gòu)物臺背回填監(jiān)理細則
- 電大護理本科臨床實習(xí)手冊內(nèi)容(原表)
- 當代德國學(xué)校勞動教育課程構(gòu)建的經(jīng)驗與啟示共3篇
- “小金庫”治理與防范 習(xí)題及答案
評論
0/150
提交評論