太原師院附中2024屆高考數學必刷試卷含解析_第1頁
太原師院附中2024屆高考數學必刷試卷含解析_第2頁
太原師院附中2024屆高考數學必刷試卷含解析_第3頁
太原師院附中2024屆高考數學必刷試卷含解析_第4頁
太原師院附中2024屆高考數學必刷試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

太原師院附中2024屆高考數學必刷試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,則()A. B.C. D.2.已知為正項等比數列,是它的前項和,若,且與的等差中項為,則的值是()A.29 B.30 C.31 D.323.已知,則不等式的解集是()A. B. C. D.4.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.5.在中,內角所對的邊分別為,若依次成等差數列,則()A.依次成等差數列 B.依次成等差數列C.依次成等差數列 D.依次成等差數列6.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c7.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.08.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為()A. B. C. D.9.已知等差數列中,則()A.10 B.16 C.20 D.2410.已知函數,,且在上是單調函數,則下列說法正確的是()A. B.C.函數在上單調遞減 D.函數的圖像關于點對稱11.已知點P不在直線l、m上,則“過點P可以作無數個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.某校在高一年級進行了數學競賽(總分100分),下表為高一·一班40名同學的數學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.12二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.14.設,滿足約束條件,若目標函數的最大值為,則的最小值為______.15.的展開式中,x5的系數是_________.(用數字填寫答案)16.若函數恒成立,則實數的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.18.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:19.(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現金的人數正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統計他們出門隨身攜帶現金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據上述樣本數據,將列聯表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82820.(12分)已知函數.(1)當時,求曲線在點的切線方程;(2)討論函數的單調性.21.(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.22.(10分)已知函數.(1)解不等式;(2)若函數的最小值為,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由不等式的性質及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質及換底公式,屬基礎題.2、B【解析】

設正項等比數列的公比為q,運用等比數列的通項公式和等差數列的性質,求出公比,再由等比數列的求和公式,計算即可得到所求.【詳解】設正項等比數列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項為,即有a4+a7=,即16q3+16q6,=,解得q=(負值舍去),則有S5===1.故選C.【點睛】本題考查等比數列的通項和求和公式的運用,同時考查等差數列的性質,考查運算能力,屬于中檔題.3、A【解析】

構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.4、B【解析】

求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5、C【解析】

由等差數列的性質、同角三角函數的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數列,,正弦定理得,由余弦定理得,,即依次成等差數列,故選C.【點睛】本題主要考查等差數列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.6、A【解析】

利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.7、B【解析】

先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點睛】本題考查向量的幾何意義,考查投影公式的應用,是基礎題.8、B【解析】

由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關鍵;屬于中檔題、常考題型.9、C【解析】

根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的??碱}型.10、B【解析】

根據函數,在上是單調函數,確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據正弦函數的單調性判斷.D.計算是否為0.【詳解】因為函數,在上是單調函數,所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數,在上是單調遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數的性質及其應用,還考查了運算求解的能力,屬于較難的題.11、C【解析】

根據直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.12、D【解析】

根據程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數,的取值為成績大于等于60且小于90的人數,故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統計量等基礎知識;考查運算求解能力,邏輯推理能力和數學應用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據球的幾何性質,利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質的應用,意在考查學生的直觀想象能力,數學運算能力和邏輯推理能力,屬于較難題.14、【解析】

先根據條件畫出可行域,設,再利用幾何意義求最值,將最大值轉化為軸上的截距,只需求出直線,過可行域內的點時取得最大值,從而得到一個關于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.15、-189【解析】由二項式定理得,令r=5得x5的系數是.16、【解析】

若函數恒成立,即,求導得,在三種情況下,分別討論函數單調性,求出每種情況時的,解關于的不等式,再取并集,即得?!驹斀狻坑深}意得,只要即可,,當時,令解得,令,解得,單調遞減,令,解得,單調遞增,故在時,有最小值,,若恒成立,則,解得;當時,恒成立;當時,,單調遞增,,不合題意,舍去.綜上,實數的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數的取值范圍,是常考題型。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ).【解析】

(Ⅰ)時,根據絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數絕對值三角不等式的應用問題,屬于常規(guī)題型.18、(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.∴當時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據絕對值的定義,合理去掉絕對值號,及合理轉化恒成立問題是解答本題的關鍵,著重考查分析問題和解答問題的能力,以及轉化思想的應用.19、(1)列聯表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】

(1)根據已知數據得出列聯表,再根據獨立性檢驗得出結論;(2)有數據可知,女性中“手機支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設實際付款元,,則的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯列表:,所以,有99%的把握認為“手機支付族”與“性別”有關;(2)有數據可知,女性中“手機支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設實際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點睛】本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.20、(1);(2)當時,在上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減.【解析】

(1)根據導數的幾何意義求解即可.(2)易得函數定義域是,且.故分,和與四種情況,分別分析得極值點的關系進而求得原函數的單調性即可.【詳解】(1)當時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當時,,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論