




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省錦州市第九中學(xué)高三數(shù)學(xué)文月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.若z∈C,且(1+i)z=3+4i,則復(fù)數(shù)z的虛部是(
) A. B. C.i D.i參考答案:B考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.專題:數(shù)系的擴(kuò)充和復(fù)數(shù).分析:利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.解答: 解:∵(1+i)z=3+4i,∴==,其虛部為.故選:B.點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,屬于基礎(chǔ)題.2.設(shè)函數(shù),則如圖所示的函數(shù)圖象對(duì)應(yīng)的函數(shù)是(
)A. B. C.
D.參考答案:C略3.已知橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F2且垂直于長(zhǎng)軸的直線交橢圓于A,B兩點(diǎn),則△ABF1的周長(zhǎng)為A.4 B.6 C.8
D.16參考答案:C由題意知的周長(zhǎng)為.故選C.4.設(shè)函數(shù),其中θ∈,則導(dǎo)數(shù)的取值范圍是(
)A.[-2,2]
B.[,]
C.[,2]
D.[,2]參考答案:D略5.和直線軸對(duì)稱的直線方程為
(
)
A.
B.
C.
D.
參考答案:A6.在等腰直角△ABC中,AB⊥AC,BC=2,M為BC中點(diǎn),N為AC中點(diǎn),D為BC邊上一個(gè)動(dòng)點(diǎn),△ABD沿AD翻折使BD⊥DC,點(diǎn)A在面BCD上的投影為點(diǎn)O,當(dāng)點(diǎn)D在BC上運(yùn)動(dòng)時(shí),以下說(shuō)法錯(cuò)誤的是()A.線段NO為定長(zhǎng) B.|CO|∈[1,)C.∠AMO+∠ADB>180° D.點(diǎn)O的軌跡是圓弧參考答案:C【分析】作出圖形,判定A,B,D正確,即可得出結(jié)論.【解答】解:如圖所示,對(duì)于A,△AOC為直角三角形,ON為斜邊AC上的中線,ON=AC為定長(zhǎng),即A正確;對(duì)于B,D在M時(shí),AO=1,CO=1,∴,即正確;對(duì)于D,由A可知,點(diǎn)O的軌跡是圓弧,即D正確;故選C.【點(diǎn)評(píng)】本題考查平面圖形的翻折,考查學(xué)生的計(jì)算能力,正確作出圖形是關(guān)鍵.7.在等差數(shù)列中,則=(
)
(A)24
(B)22
(C)20
(D)-8參考答案:答案:A8.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為(*)(參考數(shù)據(jù):,)A.12
B.18
C.24
D.32參考答案:C9.已知的圖象如圖所示,則A.
B.
C.
D.或
參考答案:C10.當(dāng)雙曲線M:﹣=1(﹣2<m<0)的焦距取得最小值時(shí),雙曲線M的漸近線方程為()A.y=± B.y=±x C.y=±2x D.y=±x參考答案:A【考點(diǎn)】雙曲線的簡(jiǎn)單性質(zhì).【分析】由題意可得c2=m2+2m+4=(m+1)2+3,可得m=﹣1取得最小值,由雙曲線的漸近線方程,可得漸近線的斜率.【解答】解:由題意可得c2=m2+2m+4=(m+1)2+3,可得當(dāng)m=﹣1時(shí),焦距2c取得最小值,雙曲線的方程為=1,即有漸近線方程為y=±x.故選A.二、填空題:本大題共7小題,每小題4分,共28分11.命題“,使得.”的否定是___________________.參考答案:12.如圖是一個(gè)算法流程圖,則輸出的的值為
.參考答案:12513.設(shè)二項(xiàng)式(x﹣)6(a≠0)的展開式中x2的系數(shù)為A,常數(shù)項(xiàng)為B,若B=44,則a=.參考答案:﹣【考點(diǎn)】二項(xiàng)式定理的應(yīng)用.【分析】在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于02,求出r的值,即可求得x2的系數(shù)為A的值;再令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng)B,再根據(jù)B=44,求得a的值.【解答】解:二項(xiàng)式(x﹣)6(a≠0)的展開式中的通項(xiàng)公式為Tr+1=?(﹣a)r?x6﹣2r,令6﹣2r=2,求得r=2,可得展開式中x2的系數(shù)為A=15a2.令6﹣2r=0,求得r=3,可得展開式中常數(shù)項(xiàng)為﹣20a3=44,求得a=﹣,故答案為:﹣.14.已知平面向量=(1,2),=(﹣2,m),且⊥,則2+3=
.參考答案:(﹣4,7)【考點(diǎn)】平面向量的坐標(biāo)運(yùn)算.【專題】計(jì)算題;轉(zhuǎn)化思想;向量法;平面向量及應(yīng)用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,則2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,則2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案為:(﹣4,7).【點(diǎn)評(píng)】本題考查了平面向量數(shù)量積的運(yùn)算,考查了平面向量的坐標(biāo)運(yùn)算,是基礎(chǔ)題.15.已知函數(shù)f(x)=,則f()的值為.參考答案:【考點(diǎn)】函數(shù)的值.
【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】利用f()==即可得出.【解答】解:f()===sin.故答案為:sin.【點(diǎn)評(píng)】本題查克拉分段函數(shù)的求值,考查了計(jì)算能力,屬于基礎(chǔ)題.16.已知()為奇函數(shù),且的圖象與軸的兩個(gè)相鄰交點(diǎn)之間的距離為,設(shè)矩形區(qū)域是由直線和所圍成的平面圖形,區(qū)域是由函數(shù)、及所圍成的平面圖形,向區(qū)域內(nèi)隨機(jī)地拋擲一粒豆子,則該豆子落在區(qū)域的概率是___________.參考答案:考點(diǎn):1.三角函數(shù);2.概率.【思路點(diǎn)晴】本題考查三個(gè)知識(shí)點(diǎn),一個(gè)是由已知求三角函數(shù)解析式,一個(gè)是定積分,一個(gè)是幾何概型.第一個(gè)可以有函數(shù)為奇函數(shù)和周期來(lái)求出,而;由于,總面積,,故概率為.對(duì)于綜合性的問(wèn)題,需要我們對(duì)每一個(gè)知識(shí)點(diǎn)掌握到位.17.設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,已知a1+a4+a10=27,則a5=
,S9=
.參考答案:9;81.【考點(diǎn)】等差數(shù)列的前n項(xiàng)和.【分析】等差數(shù)列的性質(zhì)可得:a1+a4+a10=27=3a5,解得a5,再利用S9==9a5.即可得出.【解答】解:由等差數(shù)列的性質(zhì)可得:a1+a4+a10=27=3a5,解得a5=9,∴S9==9a5=81.故答案分別為:9;81.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.(本小題滿分12分)已知(Ⅰ)若,求的極大值點(diǎn);(Ⅱ)若且存在單調(diào)遞減區(qū)間,求的取值范圍.參考答案:
令h′(x)=0,則3x2+2x-1=0,x1=-1,x2=….………3分
所以的極大值點(diǎn)為.…………6分
1
當(dāng)a>0,為開口向上的拋物線,而
總有的解;…………8分2
當(dāng)a<0,為開口向下的拋物線,有
的解;則且方程至少有一正根,此時(shí)-1<a<0………11分綜上所述,.………………12分19.如圖,直三棱柱中,,,分別是的中點(diǎn).(1)證明:平面平面;(2)求三棱錐的高.參考答案:(1)由已知得:所以∽所以,所以又因?yàn)?,是的中點(diǎn),所以所以平面,所以而,所以平面又平面,所以平面平面;(2)設(shè)三棱錐的高為,因?yàn)?所以,由,得:,所以,所以,由,得:,所以.20.已知函數(shù)(Ⅰ)求函數(shù)圖象對(duì)稱中心的坐標(biāo);(Ⅱ)如果的三邊滿足,且邊所對(duì)的角為,求的取值范圍。參考答案:(I);(II).(Ⅱ)由已知b2=ac,即的范圍是??键c(diǎn):三角變換公式及余弦定理等有關(guān)知識(shí)的綜合運(yùn)用.21.已知.(1)解關(guān)于的不等式;(2)若恒成立,求實(shí)數(shù)m的取值范圍.參考答案:(1),由可得∴不等式的解集為.(2)由(1)知的最小值為2,∴恒成立等價(jià)于,即,∴,∴實(shí)數(shù)m的取值范圍是(-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程設(shè)計(jì)合同合同
- 南海水投格式合同8篇
- 項(xiàng)目策劃與實(shí)施流程詳解文檔
- 2025個(gè)人數(shù)據(jù)隱私保護(hù)管理規(guī)范
- 2025年商洛貨運(yùn)資格證模擬考試新題庫(kù)
- 養(yǎng)馬場(chǎng)青貯采購(gòu)合同
- 環(huán)保產(chǎn)業(yè)污染防治措施方案
- 工程制圖與繪圖作業(yè)指導(dǎo)書
- 2025年安徽貨運(yùn)從業(yè)資格證考試題目及答案解析
- 《數(shù)據(jù)可視化技術(shù)應(yīng)用》4.1 理解數(shù)據(jù)分析報(bào)告要點(diǎn)- 教案
- 馬工程《藝術(shù)學(xué)概論》課件424P
- 安全管理知識(shí)培訓(xùn)課件
- 酒店安全管理制度及應(yīng)急預(yù)案
- 人工智能賦能教師數(shù)字素養(yǎng)提升
- 房地產(chǎn)估價(jià)培訓(xùn)
- 2024年度智慧城市建設(shè)綜合解決方案投標(biāo)書實(shí)例3篇
- TDT1055-2019第三次全國(guó)國(guó)土調(diào)查技術(shù)規(guī)程
- 2021年河南公務(wù)員行測(cè)考試真題及答案
- 單晶爐車間安全培訓(xùn)
- 英語(yǔ)演講技巧與實(shí)訓(xùn)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 機(jī)械制造技術(shù)基礎(chǔ)(課程課件完整版)
評(píng)論
0/150
提交評(píng)論