下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一種基于流形學(xué)習(xí)的文檔重排序方法Title:DocumentReorderingMethodbasedonManifoldLearningAbstract:Withtherapidgrowthofdigitalinformation,effectivedocumentretrievalbecomesincreasinglychallenging.Traditionalmethodssolelyrelyingonkeywordmatchingoftenfailtoaccuratelycapturethesemanticrelationshipsbetweendocuments.Toaddressthisissue,thispaperproposesadocumentreorderingmethodbasedonmanifoldlearning,whichleveragestheembeddedstructuresinhigh-dimensionaldocumentspacestoenhancetheretrievalperformance.Theproposedmethodemploysmanifoldlearningalgorithmstoreducethedimensionalityofdocumentsandreorderthembasedontheirunderlyingmanifoldstructure.Experimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedmethodovertraditionalapproaches.1.IntroductionTheexponentialgrowthofdigitaldocumentsinvariousdomains,suchasnewsarticles,scientificpapers,andwebpages,hasposedsignificantchallengesforeffectiveinformationretrieval.Traditionalmethods,primarilybasedonkeywordmatching,failtocapturetheunderlyingsemanticrelationshipsbetweendocumentsaccurately.Consequently,documentreorderingbecomesnecessarytoimprovethequalityofsearchresults.Inrecentyears,manifoldlearningtechniqueshavegainedattentionasapowerfultooltouncovertheunderlyingstructuresinhigh-dimensionaldataspaces.Hence,thispaperpresentsadocumentreorderingmethodbasedonmanifoldlearningtechniquestoenhancetheaccuracyandrelevanceofdocumentretrieval.2.RelatedWorkThissectionreviewstheexistingapproachestodocumentretrievalandreordering.First,thelimitationsoftraditionalkeyword-basedmethodsarediscussed.Next,theemergenceofmanifoldlearningalgorithmsandtheirapplicationsindocumentretrievalarepresented.Additionally,previousstudiesondocumentreorderingtechniquesbasedonmanifoldlearningarealsodiscussed,highlightingtheiradvantagesandlimitations.3.ManifoldLearningTechniquesforDocumentRepresentationThissectionintroducesmanifoldlearningtechniquescommonlyusedfordocumentrepresentation.Firstly,themathematicalfoundationsofmanifoldlearning,suchasdimensionalityreductionandpreservingneighborhoodstructures,arediscussed.Then,popularmanifoldlearningalgorithms,includingIsomap,LocallyLinearEmbedding(LLE),andt-distributedStochasticNeighborEmbedding(t-SNE),areexplainedindetail.Illustrationsandexamplesareprovidedtoaidunderstanding.4.ProposedDocumentReorderingMethodTheproposeddocumentreorderingmethodbasedonmanifoldlearningispresentedinthissection.Firstly,thedatasetispreprocessed,includingcleaning,tokenization,andnormalization.Then,thedocumentrepresentationisobtainedusingtheselectedmanifoldlearningalgorithm.Themanifoldstructureislearnedtoreducethedimensionalityofthedocumentspacewhilepreservingthelocalandglobalrelationshipsamongdocuments.Followingthat,adocumentsimilaritymeasureisdefinedbasedonthelearnedmanifoldstructure.Finally,anefficientreorderingalgorithmisemployedtorearrangethedocumentsaccordingtotheirsimilarityscores.5.ExperimentalEvaluationToevaluatetheeffectivenessoftheproposeddocumentreorderingmethod,experimentsareconductedusingbenchmarkdatasets.Thecomparativeanalysisisperformedagainsttraditionalbaselinemethods,suchasTF-IDFandLDA,andotherstate-of-the-artdocumentreorderingmethods.Theevaluationmetrics,includingprecision,recall,andF1-score,areemployedtomeasuretheperformance.Theexperimentalresultsdemonstratethesuperiorityoftheproposedmethodintermsofretrievalaccuracyandsemanticrelevance.6.DiscussionsThissectiondiscussestheadvantagesandlimitationsoftheproposeddocumentreorderingmethod.Potentialimprovementsandfuturedirectionsarealsosuggested,suchasintegratingdomain-specificinformationandleveragingensemblelearningtechniquesforenhancedperformance.7.ConclusionThispaperpresentsadocumentreorderingmethodbasedonmanifoldlearningtechniques.Theproposedmethodefficientlyexploitstheembeddedstructuresinhigh-dimensionaldocumentspaces,leadingtoimprovedsearchperformanceandmoreaccurateretrievalresults.Experimentalresultsvalidatetheeffectivenessandsuperiorityoftheproposedmethod.Futureresearchdirectionsandpotentialapplicationsarealsodiscussed,emphasizingtheimportanceofmanifoldlearning-basedapproachesinadvancingdocumentretrievalsystems.References:Includealistofthecitedreferencesfollowingastandardformat.Note:Theabovestructurei
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024政府采購環(huán)保設(shè)備采購招標(biāo)代理服務(wù)合同3篇
- 初一新生安全教育宣講
- 二建建筑工程實務(wù)-二建《建筑工程管理與實務(wù)》預(yù)測試卷2267
- 2024年公務(wù)員考試烏拉特前旗《行政職業(yè)能力測驗》預(yù)測試卷含解析
- 科教融匯培養(yǎng)創(chuàng)新人才的策略及實施路徑
- 2025年幼兒園春季安全工作計劃范文
- 2025年班主任工作計劃范文小學(xué)低年級
- 2025年市場營銷工作計劃范文
- 2025年銷售工作計劃范文
- 2025年學(xué)校秋季學(xué)期工作計劃
- 2024年電商平臺入駐服務(wù)合同
- 2024年度政府采購代理服務(wù)合同-醫(yī)療衛(wèi)生設(shè)備采購項目3篇
- GJB9001C版標(biāo)準(zhǔn)培訓(xùn)課件
- 船舶防火與滅火(課件)
- 七、監(jiān)理工作重點(diǎn)、難點(diǎn)分析及對策
- 面膜中藍(lán)銅肽經(jīng)皮滲透性和改善皮膚衰老作用研究
- 湖北省荊州市八縣市2023-2024學(xué)年高一上學(xué)期1月期末考試 化學(xué) 含解析
- 專題05 說明文閱讀(必考題型梳理)50題-2023-2024學(xué)年八年級語文下學(xué)期期中專題復(fù)習(xí)(上海專用)(解析版)
- 《水文化概論》全套教學(xué)課件
- 2023年四川省公務(wù)員錄用考試《行測》真題卷及答案解析
- 社區(qū)共享菜園建設(shè)方案及實施計劃
評論
0/150
提交評論