


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
一種基于流形學(xué)習(xí)的文檔重排序方法Title:DocumentReorderingMethodbasedonManifoldLearningAbstract:Withtherapidgrowthofdigitalinformation,effectivedocumentretrievalbecomesincreasinglychallenging.Traditionalmethodssolelyrelyingonkeywordmatchingoftenfailtoaccuratelycapturethesemanticrelationshipsbetweendocuments.Toaddressthisissue,thispaperproposesadocumentreorderingmethodbasedonmanifoldlearning,whichleveragestheembeddedstructuresinhigh-dimensionaldocumentspacestoenhancetheretrievalperformance.Theproposedmethodemploysmanifoldlearningalgorithmstoreducethedimensionalityofdocumentsandreorderthembasedontheirunderlyingmanifoldstructure.Experimentalresultsdemonstratetheeffectivenessandsuperiorityoftheproposedmethodovertraditionalapproaches.1.IntroductionTheexponentialgrowthofdigitaldocumentsinvariousdomains,suchasnewsarticles,scientificpapers,andwebpages,hasposedsignificantchallengesforeffectiveinformationretrieval.Traditionalmethods,primarilybasedonkeywordmatching,failtocapturetheunderlyingsemanticrelationshipsbetweendocumentsaccurately.Consequently,documentreorderingbecomesnecessarytoimprovethequalityofsearchresults.Inrecentyears,manifoldlearningtechniqueshavegainedattentionasapowerfultooltouncovertheunderlyingstructuresinhigh-dimensionaldataspaces.Hence,thispaperpresentsadocumentreorderingmethodbasedonmanifoldlearningtechniquestoenhancetheaccuracyandrelevanceofdocumentretrieval.2.RelatedWorkThissectionreviewstheexistingapproachestodocumentretrievalandreordering.First,thelimitationsoftraditionalkeyword-basedmethodsarediscussed.Next,theemergenceofmanifoldlearningalgorithmsandtheirapplicationsindocumentretrievalarepresented.Additionally,previousstudiesondocumentreorderingtechniquesbasedonmanifoldlearningarealsodiscussed,highlightingtheiradvantagesandlimitations.3.ManifoldLearningTechniquesforDocumentRepresentationThissectionintroducesmanifoldlearningtechniquescommonlyusedfordocumentrepresentation.Firstly,themathematicalfoundationsofmanifoldlearning,suchasdimensionalityreductionandpreservingneighborhoodstructures,arediscussed.Then,popularmanifoldlearningalgorithms,includingIsomap,LocallyLinearEmbedding(LLE),andt-distributedStochasticNeighborEmbedding(t-SNE),areexplainedindetail.Illustrationsandexamplesareprovidedtoaidunderstanding.4.ProposedDocumentReorderingMethodTheproposeddocumentreorderingmethodbasedonmanifoldlearningispresentedinthissection.Firstly,thedatasetispreprocessed,includingcleaning,tokenization,andnormalization.Then,thedocumentrepresentationisobtainedusingtheselectedmanifoldlearningalgorithm.Themanifoldstructureislearnedtoreducethedimensionalityofthedocumentspacewhilepreservingthelocalandglobalrelationshipsamongdocuments.Followingthat,adocumentsimilaritymeasureisdefinedbasedonthelearnedmanifoldstructure.Finally,anefficientreorderingalgorithmisemployedtorearrangethedocumentsaccordingtotheirsimilarityscores.5.ExperimentalEvaluationToevaluatetheeffectivenessoftheproposeddocumentreorderingmethod,experimentsareconductedusingbenchmarkdatasets.Thecomparativeanalysisisperformedagainsttraditionalbaselinemethods,suchasTF-IDFandLDA,andotherstate-of-the-artdocumentreorderingmethods.Theevaluationmetrics,includingprecision,recall,andF1-score,areemployedtomeasuretheperformance.Theexperimentalresultsdemonstratethesuperiorityoftheproposedmethodintermsofretrievalaccuracyandsemanticrelevance.6.DiscussionsThissectiondiscussestheadvantagesandlimitationsoftheproposeddocumentreorderingmethod.Potentialimprovementsandfuturedirectionsarealsosuggested,suchasintegratingdomain-specificinformationandleveragingensemblelearningtechniquesforenhancedperformance.7.ConclusionThispaperpresentsadocumentreorderingmethodbasedonmanifoldlearningtechniques.Theproposedmethodefficientlyexploitstheembeddedstructuresinhigh-dimensionaldocumentspaces,leadingtoimprovedsearchperformanceandmoreaccurateretrievalresults.Experimentalresultsvalidatetheeffectivenessandsuperiorityoftheproposedmethod.Futureresearchdirectionsandpotentialapplicationsarealsodiscussed,emphasizingtheimportanceofmanifoldlearning-basedapproachesinadvancingdocumentretrievalsystems.References:Includealistofthecitedreferencesfollowingastandardformat.Note:Theabovestructurei
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年具有獨立功能電氣設(shè)備及裝置項目發(fā)展計劃
- 2024安徽蕪湖鳩茲水務(wù)有限公司下屬子公司第一批招聘及政審考察筆試參考題庫附帶答案詳解
- Unit 8 Lesson 43 What Makes You Unique2024-2025學(xué)年八年級英語上冊同步教學(xué)設(shè)計(冀教版)河北專版
- 2024四川融通安防投資集團有限公司下屬子公司公開招聘生產(chǎn)技術(shù)序列合同員工筆試參考題庫附帶答案詳解
- 第五章自然環(huán)境的整體性與差異性(大單元教學(xué)設(shè)計)高二地理同步備課系列(人教版2019選擇性必修1)
- Unit 1 Life Choices Lesson 2 Understanding and Coping with Stress 教學(xué)設(shè)計-2024-2025學(xué)年高中英語北師大版(2019)必修第一冊
- 2025至2030年中國沙發(fā)獨立彈簧數(shù)據(jù)監(jiān)測研究報告
- 2025年廣西城市職業(yè)大學(xué)單招職業(yè)傾向性測試題庫審定版
- 2025至2030年中國水洗服裝數(shù)據(jù)監(jiān)測研究報告
- 2025年P(guān)P-R再生料項目建議書
- 咖啡店合同咖啡店合作經(jīng)營協(xié)議
- 2025年山東鋁業(yè)職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 全套電子課件:技能成就夢想
- 2024年教育公共基礎(chǔ)知識筆記
- 2025年江蘇農(nóng)林職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 異構(gòu)數(shù)據(jù)融合技術(shù)-深度研究
- 北京市朝陽區(qū)2024-2025學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 《銷售合同執(zhí)行》課件
- 2024年湖南汽車工程職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導(dǎo)則
- 二級公立醫(yī)院績效考核三級手術(shù)目錄(2020版)
評論
0/150
提交評論