2020-2021學(xué)年信陽市高二年級(jí)上冊期末數(shù)學(xué)試卷(理科)(含解析)_第1頁
2020-2021學(xué)年信陽市高二年級(jí)上冊期末數(shù)學(xué)試卷(理科)(含解析)_第2頁
2020-2021學(xué)年信陽市高二年級(jí)上冊期末數(shù)學(xué)試卷(理科)(含解析)_第3頁
2020-2021學(xué)年信陽市高二年級(jí)上冊期末數(shù)學(xué)試卷(理科)(含解析)_第4頁
2020-2021學(xué)年信陽市高二年級(jí)上冊期末數(shù)學(xué)試卷(理科)(含解析)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2020-2021學(xué)年信陽市高二上學(xué)期期末數(shù)學(xué)試卷(理科)

一、單選題(本大題共12小題,共60.0分)

1.命題“若(a—2)(6—3)=0,貝布=2或b=3”的否命題是()

A.若(a-2)(b—3)大0,貝ija大2或6豐3

B.若Q—2)(b—3)W0,則aW2且bW3

C.若(a—2)(Z?-3)=0,則a。2或力H3

D.若(a—2)(b—3)=0,則aW2且bW3

2.已知正方體4BCD-&BiCiDi中,空=:砧若荏=乂兀匕+y(荏+同),貝心)

A.%==|B.%==1C.x=l,y=|D.久=l,y=;

ZZZJ4

3.已知%,y£R,且無>y>0,則()

.11c

A.x—y>---B.cosx—cosy<0

C.-A。D.Inx+lny>0

4.在等比數(shù)列{a九}中,已知的=1,a6=243,則的=()

A.9B.9或一9C.27D.27或一27

2

5.經(jīng)過雙曲線:上-y2=1的右焦點(diǎn)的直線與雙曲線交于兩點(diǎn)a,B,若48=4,則這樣的直線有

417

幾條()

A.1條B.2條C.3條D.4條

6.在AdBC中,a=2,b=3,C=135°,則AABC的面積等于()

A.隨B.3V2C.延D.3

22

7.等差數(shù)列{斯}的首項(xiàng)為1,公差d=2,則a1+a2++<25=()

A.45B.35C.25D.-15

8.方程(2-匕)/+(/;-1)*=1的圖象表示曲線(;,有以下四個(gè)結(jié)論:

①當(dāng)t=|時(shí),曲線C是圓;

②當(dāng)l<t<2時(shí),曲線C是橢圓;

③當(dāng)t>2時(shí),曲線C是雙曲線;

④當(dāng)t=2時(shí),曲線C是拋物線.

其中結(jié)論正確的個(gè)數(shù)為()

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

9.下列結(jié)論正確的是()

A.當(dāng)笫:>蚓且發(fā).,承1時(shí),-—逆口

晦雷

B.當(dāng)您:海峋時(shí),病#二廠壁鬟;

C.當(dāng)雷里翦時(shí),常的最小值為2;

D.當(dāng)御,*:察£罷時(shí),富,-工無最大值;

需.

10.數(shù)列{&J的通項(xiàng)公式為即=癡扁,則{an}的前8項(xiàng)之和為()

AWB.總C.||D.g

11.在△48C中,角4,B,C所對(duì)的邊分別為a,b,c,若△718C的三邊a,6,c成等比數(shù)列,則cos2B+

cosB+cos(i4—C)的值為()

A.0B.1C.2D.不能確定

12.雙曲線d-崎婷=:1的一個(gè)焦點(diǎn)坐標(biāo)為1解四|,則雙曲線的漸近線方程為()

A.般=赴?雷B.般=世:需C./=整需D.需

二、單空題(本大題共4小題,共20.0分)

13.條件p:2+1<0,條件q:|x+l|>2,則"是飛的條件(填充分不必要,必要不

充分,充要條件)

%+y-2<0

14.已知久,y,滿足2%+y+lN0,貝!Jz=—2%+y+3的最小值是.

—2y—240

15.設(shè)蠲、禹分別為雙曲線三-《=重例><副制順的左、右焦點(diǎn),點(diǎn)產(chǎn)在雙曲線的右支上,且

|翻陶=;筑鬲|,焉到直線/用的距離等于雙曲線的實(shí)軸長,該雙曲線的漸近線方程為

16.如圖,A,E是半圓周上的兩個(gè)三等分點(diǎn),直徑BC=4,AD1BC,4-

垂足為。,BE與4。相交于點(diǎn)F,明4尸的長為.

B

DO

三、解答題(本大題共7小題,共84.0分)

17.在△ABC中,角4,B,C的對(duì)邊分別為a,b,c,且a<6<c,y/3a—2bsinA.

(I)求8的大小;

(口)若a=2,6=?,求c的值.

18.數(shù)列{即}中,的=8,a4=2,且滿足即+2—2an+i+廝=0,neN*.

(1)求數(shù)列{時(shí)}的通項(xiàng);

(2)設(shè)Sn=+|a2|+—卜l?nl,求

19.如圖,在四棱柱ABCD中,側(cè)面ADD141和側(cè)面CDDiG都是矩

形,BC//AD,△4BD是邊長為2的正三角形,E,尸分別為4D,力道1的中

點(diǎn).

(I)求證:DDi1平面48CD;

(II)求證:平面4BE1平面力D£?i&;

(HI)若CF〃平面&BE,求棱BC的長度.

20.如圖已知橢圓C在久軸上的一個(gè)焦點(diǎn),與短軸兩個(gè)端點(diǎn)的連線互相垂

直,且右焦點(diǎn)坐標(biāo)為(百,0).

(1)求橢圓C的方程;

(2)設(shè)直線1與圓/+/=2相切,和橢圓交于2,8兩點(diǎn),。為原點(diǎn),線段

OA,OB分另IJ和圓/+y2=2交于C,D兩點(diǎn),設(shè)AAOB,△COD的面

積分別為Si,S2,求金的取值范圍.

21.定義在。上的函數(shù)/(久),如果滿足:對(duì)任意%CD,存在常數(shù)M20,都有,(x)|WM成立,則稱

/(X)是。上的有界函數(shù),其中M稱為函數(shù)/(%)的一個(gè)上界.

x

已知函數(shù)/(久)=1+a(1)+G)x,g(x)=log2詈.

(I)若函數(shù)g(£)為奇函數(shù),求實(shí)數(shù)a的值;

(11)在(1)的條件下,求函數(shù)或久)在區(qū)間停,3]上的所有上界構(gòu)成的集合;

(HI)若函數(shù)/(%)在[0,+8)上是以7為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

22.請(qǐng)考生在第(一)、(二)、(三)三題中任選一題做答,如果多做,則按所做的第一題記分.(1)選修

4—1:幾何證明選講

已知AABC中,AB=AC,。是AABC外接圓劣弧上的點(diǎn)(不與點(diǎn)4,C重合),延長8。至£

(1)求證:2。的延長線平分NCDE;

(2)若4847=30。,△48。中8。邊上的高為2+、回,求448。外接圓的面積.

(2)選修4—4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系久Oy中,以。為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲

線C的極坐標(biāo)方程為pcos(6-:)=1,M,N分別為。與萬軸,y軸的交點(diǎn).

(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);

(2)設(shè)MN的中點(diǎn)為P,求直線0P的極坐標(biāo)方程.

(3)選修4—5:不等式選講

設(shè)函數(shù)f(x)=]x-1|+|x-a|.

(1)若a=-l,解不等式/(K)23;

(2)如果VxeR,/(%)>2,求a的取值范圍.

23.請(qǐng)考生在22、23題中任選一題作答,如果多做,則按所做的第一題計(jì)分,作答時(shí)請(qǐng)

寫清題號(hào).

22.(本小題滿分10分)

如圖,A,B,C,D四點(diǎn)在同一圓上,RC與工。的延長線交于點(diǎn)5,點(diǎn)F在班的延長線上.

EC1ED1?DC....

(1)若一=-,—=一,求一的值;

EB3EA2AB

⑵若EF”=FAFB,證明:EFffCD-

23(本小題滿分10分)已知白>0,6>0,a=2.

14

(1)求上+2的最小值;

ab

(2)求證:G+&xl

a+b

參考答案及解析

1.答案:B

解析:解:一般命題的否命題,就是將命題的條件與結(jié)論都否定,

所以命題“若(a-2)(b-3)=0,則a=2或b=3”的否命題是若(a-2)(b-3)40,則a豐2且6豐

3,

故選:B

直接按照否命題的定義,寫出命題的否命題即可.

本題考查命題與否命題的關(guān)系,考查基本知識(shí)的應(yīng)用.

2.答案:D

解析:

本題考查向量的線性運(yùn)算及空間向量基本定理,屬于基礎(chǔ)題.

由圖,根據(jù)向量的運(yùn)算法則把向量而用三個(gè)向量再、AB.4的線性組合表示出來,由于此三個(gè)

向量是不共面的,由空間向量基本定理知,一個(gè)向量在一組基底上的分解是唯一的,由此得到系數(shù)X,

y的值,選出正確答案.

解:由題意,如圖荏二村+市二初+1冗耳

又前=不圖,而=超+而

1

???~AE=AA^+-(AB+AD)

由已知荏=xAA^+y(AB+AD)

由空間向量基本定理知x=l,y=7.

故選:D.

3.答案:A

解析:解:A."x>y>0,.,?%—y—(]一?=(x-y)?曹>0,???£一、>《一點(diǎn)因此正確;

A取%=47i+gy=2TT+p貝!Jcos%—cosy>0,因此不正確;

ii11

C.v%>y>0,->?*---->0,因此不正確;

D取久=/y=—,則"x+/ny=-3<0,因此不正確.

故選:A.

利用不等式的基本性質(zhì)、取特殊值法即可得出.

本題考查了不等式的基本性質(zhì)、取特殊值法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

4.答案:A

解析:

解:根據(jù)題意,等比數(shù)列{即}中,其公比為q,

已知名=1,46=243,則q5=£=243,解可得q=3,

則他—a1=9;

故選:A.

根據(jù)題意,由等比數(shù)列的通項(xiàng)公式可得q5=£=243,解可得q的值,又由a3=的/,計(jì)算即可得

答案.

本題考查等比數(shù)列的通項(xiàng)公式,關(guān)鍵是求出該數(shù)列的公比.

5.答案:C

解析:解:由題意,a=2,b=1.

若4B只與雙曲線右支相交時(shí),AB的最小距離是通徑,長度為空=1,

a

???=4>1,.?.此時(shí)有兩條直線符合條件;

若48與雙曲線的兩支都相交時(shí),此時(shí)48的最小距離是實(shí)軸兩頂點(diǎn)的距離,長度為2a=4,距離無最

大值,

■-AB=4,.?.此時(shí)有1條直線符合條件;

綜合可得,有3條直線符合條件;

故選C

根據(jù)題意,求得a、6的值,根據(jù)直線與雙曲線相交的情形,分兩種情況討論:①4B只與雙曲線右支

相交,②AB與雙曲線的兩支都相交,分析其弦長的最小值,可得符合條件的直線的數(shù)目,綜合可得

答案.

本題考查直線與雙曲線的關(guān)系,解題時(shí)可以結(jié)合雙曲線的幾何性質(zhì),分析直線與雙曲線的相交的情

況,分析其弦長最小值,從而求解,可避免由弦長公式進(jìn)行計(jì)算.

6.答案:C

解析:解:在4ABC中,a=2,b=3,C=135°,則44BC的面積S=-absinC=-x2x3x-=—.

2222

故選c.

直接利用三角形的面積公式,求解即可.

本題是基礎(chǔ)題,考查三角形的面積的求法,考查計(jì)算能力.

7.答案:C

解析:解:由題意可得:+a2+a3+a4+a5=5a3=5x(1+2x2)=25.

故選:C.

利用等差數(shù)列的通項(xiàng)公式與性質(zhì)即可得出.

本題考查了等差數(shù)列的通項(xiàng)公式與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

8.答案:B

解析:解:方程(2—+1)*=1的圖象表示曲線c,有以下四個(gè)結(jié)論:

①當(dāng)"泄,即/+y2=2曲線C是圓;①正確;

②當(dāng)且t短時(shí),2-t>0,-1>0曲線C是橢圓;②錯(cuò)誤;

③當(dāng)t>2時(shí),2-t<0,t-1>0曲線C是雙曲線;③正確;

④當(dāng)t=2時(shí),2-t=0,t-1=1曲線Cy?=1是直線.④錯(cuò)誤.

故有2個(gè)正確,

故選:B.

討論參數(shù)3利用圓錐曲線的定義進(jìn)行判斷即可.

本題考查了曲線與方程,考查了圓錐曲線的定義,是中檔題.

9.答案:B

解析:試題分析:基本不等式的應(yīng)用要把握:一正二定三相等.力選項(xiàng)中0<x<l時(shí)lgx<0.所以4選

項(xiàng)不成立.C選項(xiàng)中當(dāng)扃?普工取到最小值時(shí)x=1.所以不包含在京漫竄中.所以排除CD選項(xiàng)中客-工是

關(guān)于x遞增的代數(shù)式,當(dāng)x=2時(shí)取到最大值.所以排除。.8選項(xiàng)符合了一正二定三相等的條件.故選

考點(diǎn):1.基本不等式的應(yīng)用.2.對(duì)數(shù)知識(shí),函數(shù)的單調(diào)性知識(shí).

10.答案:C

解析:解:數(shù)列{廝}的通項(xiàng)公式為廝=1=久;一京),

所以則{。九}的前8項(xiàng)之和為:++++…+]_3)

Z3243b46o1U

1111

=-X(14---------------)

212910J

29

=??

故選:c.

化簡數(shù)列的通項(xiàng)公式,利用裂項(xiàng)消項(xiàng)法求解數(shù)列的和即可.

本題考查數(shù)列的通項(xiàng)公式以及數(shù)列求和,考查轉(zhuǎn)化思想以及計(jì)算能力.

11.答案:B

解析:解:???在△4BC中,若a,b,c成等比數(shù)列,爐=ac,

利用正弦定理可得si/B=sinAsinC.

cos(4—C)+cosB+cos2B=cos(X—C)—cos(4+C)+cos2B

=2sinAsinC+cos2B=2sin2B+(1—2sin2B')=1.

故選艮

運(yùn)用等比數(shù)列的性質(zhì)和正弦定理可得,sin2B=sinAsinC,利用三角形的內(nèi)角和,兩角和與差的三角

函數(shù)化簡cos(4-C)+cosB+cos2B,然后利用二倍角公式化簡即可.

本題考查三角函數(shù)和正弦定理及等比數(shù)列的知識(shí),解題時(shí)要注意公式的合理選用,考查計(jì)算能力,

屬于中檔題.

12.答案:C

?0,/_,展'_7

解析:試題分析:因?yàn)殡p曲線/-野產(chǎn)=?,可化為丁一」,有因?yàn)槠渲幸粋€(gè)焦點(diǎn)坐標(biāo)為||居期

__4A

所以:H1=《、閡比二嬲=土所以雙曲線的方程為/-K=,由雙曲線漸進(jìn)線公式般=可得

㈱44閾

/=■常.故選c,

考點(diǎn):1.圓錐曲線的標(biāo)準(zhǔn)方程2圓錐曲線的性質(zhì)3轉(zhuǎn)化的思想.

13.答案:必要不充分

解析:解:解不等式二7+1<0,得:2<%<3,

p:2<%<3,~p:%Z3或久42,

解不等式|x+l|>2,得:久>1或久<-3,

q:X>1或X<—3,-q:—3<X<1,

「P是%的必要不充分條件,

故答案為:必要不充分.

分別求出關(guān)于p,q的不等式,求出滿足",飛的x的范圍,結(jié)合充分必要條件的定義,從而得到

答案.

本題考查了充分必要條件,考查了解不等式問題,是一道基礎(chǔ)題.

14.答案:—1

解析:解:由z=-2x+y+3,得y=2x+z-3

作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:

由圖象可知當(dāng)直線y=2x+z—3過點(diǎn)力時(shí),直線y=

3的在y軸的截距最小,此時(shí)z最小,

由k1二二2得42,。),

此時(shí)z=-2%+y+3=-1,

故答案為:-1.

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.

本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

15.答案:承=北三富,

3

解析:試題分析:過,弱做,躅的垂線,垂足為E,在/EF/2中,因?yàn)?尸2=2C,EF2=2a,所以E&=2b。

所以p&=46,由雙曲線的定義知:PFr-PF2=2a,即4b-2c=2a,平方得:

輜守書售多,用穎窘=謖,"又%產(chǎn)=/*所有瀉,所有雙曲線的漸近線方程為…鏟。

考點(diǎn):雙曲線的定義;雙曲線的簡單性質(zhì)。

點(diǎn)評(píng):雙曲線的漸近線方程為般=近也富;雙曲線£-W=:i的漸近線方程為

:靖黯:踴:前~,Sr

16.答案:

解析:如圖,

連接CE,AO,AB.mA,E是半圓周上的兩個(gè)三等分點(diǎn),BC為直徑,可得/CEB=90°,乙CBE=30°,

^AOB=60°,故A40B為等邊三角形,AD=&OD=BD=1,DF=^.,AFAD-DF=

17.答案:解:(I)由遍。=2加譏/,得=2sinBs譏A,

因?yàn)?<A<兀,所以sinA。0,

所以sinB=—,

2

因?yàn)?<B<兀,且a<b<c,

所以8=60°.

(II)因?yàn)?=60。,a=2,匕=夕,

所以,由余弦定理可得:b2=a2+c2—2accosB,即:7=4+c2—2x2xcx1,整理可得:c2—

2c—3=0,

所以解得:。=3或一1(舍去).

解析:(I)由75a=2bsinA,利用正弦定理得=2sinBsinAf從而可得sinB=與,結(jié)合0<BV

n,且a<b<c,可求B.

(n)利用余弦定理即可解得c的值.

本題考查正弦定理、余弦定理的運(yùn)用,考查學(xué)生的數(shù)形結(jié)合思想和計(jì)算能力,屬于中檔題.

18.答案:(1)由題思,出1+2—=。九+1—,

??.數(shù)列是以8為首項(xiàng),-2為公差的等差數(shù)列

???an=10—2n,nEN

(2)(2)van=10—2n,令c1n—0,得n=5.

當(dāng)n>5時(shí),an<0;當(dāng)n=5時(shí),an=0;當(dāng)n<5時(shí),an>0.

???當(dāng)71>5時(shí),Sn=|%|+|gI+…+||=%+劭+…+。5—(。6+。7+…+^n)=75—(Tn-

75)=2T,-Tn,Tn=ar+a2-----Fan.

當(dāng)九<5時(shí),Sn=|fli|+\a2\H-----F\an\=ar+a2-\-----an=Tn.

』=[-叱嗎?N

In2—9n+40n>6

解析:(1)首先判斷數(shù)列{%}為等差數(shù)列,由的=8,a4=2求出公差,代入通項(xiàng)公式即得.

(2)首先判斷哪幾項(xiàng)為非負(fù)數(shù),哪些是負(fù)數(shù),從而得出當(dāng)n>5時(shí),Sn=同+|a2|+??-+\an\=^+

a2+…+。5—(。6+。7+…+求出結(jié)果;當(dāng)n<5時(shí),Sn—+\o-21+…+|on|=a1+a2+

…+即當(dāng),再利用等差數(shù)列的前71項(xiàng)和公式求出答案.

考查了等差數(shù)列的通項(xiàng)公式和前幾項(xiàng)和公式,求出公差,用代入法直接可求;(2)問的關(guān)鍵是斷哪幾

項(xiàng)為非負(fù)數(shù),哪些是負(fù)數(shù),屬于中檔題.

19.答案:(I)證明:因?yàn)閭?cè)面和側(cè)面CDDiQ都是矩形,

所以gl/W,S.DD11CD.

因?yàn)?。PtCD=D,

所以DDi_L平面ABCD.

(U)證明:因?yàn)锳ABD是正三角形,且E為4。中點(diǎn),

所以BE14D.

因?yàn)?。Di_1_平面ABC。,

而BEu平面力BCD,

所以BE1DD「

因?yàn)锳DCl皿=D,

所以BE1平面

因?yàn)锽Eu平面&BE,

所以平面&BE_L平面

(HI)解:因?yàn)锽C〃40,F為4也的中點(diǎn),

所以BC〃2/.

所以B、C、F、&四點(diǎn)共面.

因?yàn)榈?/平面&8E,

而平面BCF&n平面&BE=ArB,

所以C77/&A

所以四邊形BCF&是平行四邊形.

所以BC=F&=\AD=1.

解析:(1)證明。。114。,且DDilCD,即可證明:D£)i_L平面4BCD;

(II)證明BE_L平面4DD12.即可證明:平面4BE1平面40£?14;

(HI)證明四邊形BCF4是平行四邊形,求棱BC的長度.

本題考查線面垂直、面面垂直,考查線面平行的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

20.答案:解:⑴設(shè)橢圓的標(biāo)準(zhǔn)方程為5=l(a〉6>0).

如圖所示,△&F4為等腰直角三角形,。尸為斜邊的中線(高),…a/

分)弋歲力

且|。/|=c,M1/2I=2b,c=b=遮,a2=h2+c2=6...(3分)

故所求橢圓的標(biāo)準(zhǔn)方程為次+4=「..(4分)

(2)①當(dāng)直線/斜率不存在時(shí),其方程為久=±四,

由對(duì)稱性,不妨設(shè)為刀=或,

此時(shí)4(魚,企),8(逐一期,(7(1,1),。(1,一1),故怖=|=2...(5分)

②若直線I斜率存在,設(shè)其方程為y=kx+小,由已知裊=/今血2=2(i+l)…伯分)

設(shè)3(%2,、2),將直線,與橢圓聯(lián)立得(21+1)%2+4kmx+2m2—6=0…(7分)

由韋達(dá)定理/+“2=—建?=黑??(8分)

結(jié)合|OC|=\OD\=&及比=3-泊,-yl=3-|xj,

可知:I;=泰;靠::黑=l\°A\-\°B\=*好+比-&+犬-?分)

22

=1J(3+.*)(3+打分=|^9+|[(%!+x2)-2x1x2]+^(x1x2),

將韋達(dá)定理代入整理得包=i19+誣廿6而+36修;18+(田3(…分

22

S227(2fc+l)'J

結(jié)合恒2=2*2+1)知1=15+28心:%互設(shè)t=2卜2+12LU=;e(0,1],

2

則皂=45+7t2+J-8=11_88+16=人-8&2+8十+16=-l-8(u--)+18,

2

S22\t27t2t22q12,

當(dāng)〃=泄,表達(dá)式取得最大值:|V2,11=1時(shí),表達(dá)式取得最小值:2,

所以金e[2,|@,

綜上金的取值范圍為…(12分)

解析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為《+5=l(a>6>0).利用已知條件求出a,b,即可求解橢圓的標(biāo)準(zhǔn)

方程.

(2)①當(dāng)直線/斜率不存在時(shí),就是求解,;②若直線/斜率存在,設(shè)其方程為y=+由已知

^===V2=>m2=2(1+/c2),設(shè)4(久】,乃),8(久2,丫2),將直線】與橢圓聯(lián)立得(2A:2+l)x2+4kmx+

2m2-6=0,由韋達(dá)定理,結(jié)合三角形的面積,化簡所求比值,利用換元法以及二次函數(shù)的性質(zhì)求

解求值范圍即可.

本題考查橢圓的簡單性質(zhì)的應(yīng)用,橢圓方程的求法,直線與橢圓的位置關(guān)系的應(yīng)用,考查轉(zhuǎn)化思想

以及計(jì)算能力,是難題.

21.答案:解:(I)因?yàn)楹瘮?shù)gQ)為奇函數(shù),所以羊(―x)=—g(x),

即2。比一=/。次土彳恒成立,即—=乎解得a=±1,

--x-1dx-1-x-11-ax

而當(dāng)Q=1時(shí)不合題意,故Q=—1.

(口)由(I)得:g(x)=log2—,g(%)定義域?yàn)椋?8,-1)u(1,+8),

而g(%)=log2詈=log2(l+看),令九(%)=(1+占,

易知九(%)在區(qū)間(1,+8)上單調(diào)遞減,

所以函數(shù)9(?=⑹2詈在區(qū)間停,3]上單調(diào)遞減,

所以函數(shù)9(")=/。比詈在區(qū)間專3]上的值域?yàn)椋?,3],

所以|g(x)|<3,

故函數(shù)或久)在區(qū)間停,3]上的所有上界構(gòu)成集合為[3,+8).

(皿)由題意知,IfQ)|W7在[0,+8)上恒成立.一W7,-8-尸

...一8.2、一<a<6-2x-(3工在[0,+8)上恒成立.

???[-8?2、一?力max<?<[6-2--(jy]min,

設(shè)2,=t,q(t)=-8t—p(t)=6t—p

由久G[0,+8)得1>1,

(12-11)(8字2-1)(右一七)(61江2+1)

設(shè)1Wti<t2,q(L)-q(t2)=>°,P(ti)-P(t2)=<0,

所以q(t)在[1,+8)上遞減,p(t)在[1,+8)上遞增,q(t)在[1,+8)上的最大值為q(l)=-9P⑷在

[1,+8)上的最小值為p(l)=5,

所以實(shí)數(shù)a的取值范圍為[-9,5].

解析:(I)通過g(-x)=—g。),轉(zhuǎn)化求解即可.

(U)h(x)=(1+三),在區(qū)間(1,+8)上單調(diào)遞減,推出|g(x)|W3,然后推出結(jié)果.

(m)|/(x)|<7在[0,+8)上恒成立.—7</(%)<7,-8-G尸<a(》x<6-(^)x,得到[—8-2X-

x

^)]max<a<[6-2^-設(shè)*=t,q(t)=-8t-i,p(t)=6t-p通過核對(duì)的單調(diào)性求解

函數(shù)的最小值與最大值,然后推出結(jié)果.

本題考查函數(shù)與方程的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的奇偶性的應(yīng)用,函數(shù)的最值的求法,考查轉(zhuǎn)

化思想以及計(jì)算能力,是中檔題.

22.答案:(一)解:⑴證明:如圖,設(shè)F為4。延長線上一點(diǎn).

???4B,C,。四點(diǎn)共圓,

乙CDF=/.ABC.

XAB=AC,AABC=AACB,

5.^ADB=Z.ACB.:.4ADB=/.CDF.

對(duì)頂角NEDF=NADB,故NEDF=NCDF,

即40的延長線平分aDE.5分

(2)設(shè)。為外接圓圓心,連接4。交BC于H,則2H1BC.

連接。C.由題意乙。4。=N0C4=15。,ZXCB=75°.

?-?LOCH=60°.

設(shè)圓半徑為r,則r+走r=2+g,得r=2,外接圓面積為47r.i。分

2

(二)解:(1)由pcos(6-g)=1得

1J3

灰一cos6+2—sin&)=1-

22

從而C的直角坐標(biāo)方程為

1g

—x+——V=1,

22

即x+=2.

e=o時(shí),p=2,所以M(2,0);

6=二時(shí),(=空,所以N(述,3).5分

2口332

(2)M點(diǎn)的直角坐標(biāo)為(2,0),

N點(diǎn)的直角坐標(biāo)為(0,衛(wèi)),

3

所以P點(diǎn)的直角坐標(biāo)為(1,走),則P點(diǎn)的極坐標(biāo)為(過1,-).

336

所以直線。P的極坐標(biāo)方程為6=—,pe(-8,+8).10分

P

(三)解:(1)當(dāng)a=-l時(shí),/(%)=|x-l|+|x+l|.

由/'(X)>3得

|x-1|+|x+1|23,

①xW—1時(shí),不等式化為

1—x—1—%之3,即-2%Z3.

x<—1,3

不等式組V“、.的解集為(一8,一-J.

②當(dāng)—1<%<1時(shí),不等式化為

l-x+x+l>3,不可能成立.

-1<x<1,

不等式組〈“、.的解集為。.

③當(dāng)x>l時(shí),不等式化為

X—l+x+l>3,即2久

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論