河北省廊坊市三河市2024年中考一模數(shù)學(xué)試題含解析_第1頁
河北省廊坊市三河市2024年中考一模數(shù)學(xué)試題含解析_第2頁
河北省廊坊市三河市2024年中考一模數(shù)學(xué)試題含解析_第3頁
河北省廊坊市三河市2024年中考一模數(shù)學(xué)試題含解析_第4頁
河北省廊坊市三河市2024年中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河北省廊坊市三河市2024年中考一模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據(jù)圖1、圖2、圖3的數(shù)據(jù),判斷三人行進路線長度的大小關(guān)系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲2.如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當(dāng)點E到達(dá)點C時停止運動,過點E作EF⊥AE交CD于點F,設(shè)點E運動路程為x,CF=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對3.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.64.計算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.5.下列圖形中,不是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形6.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°7.2018的相反數(shù)是()A. B.2018 C.-2018 D.8.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°9.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠110.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.12.如圖,點A、B、C是⊙O上的點,且∠ACB=40°,陰影部分的面積為2π,則此扇形的半徑為______.13.如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(點P不與點A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.14.將兩塊全等的含30°角的三角尺如圖1擺放在一起,設(shè)較短直角邊為1,如圖2,將Rt△BCD沿射線BD方向平移,在平移的過程中,當(dāng)點B的移動距離為時,四邊ABC1D1為矩形;當(dāng)點B的移動距離為時,四邊形ABC1D1為菱形.15.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.16.如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=(k>0)在第一象限的圖象經(jīng)過A,C兩點,若△OAB面積為6,則k的值為_____.17.如圖,在菱形ABCD中,DE⊥AB于點E,cosA=,BE=4,則tan∠DBE的值是_____.三、解答題(共7小題,滿分69分)18.(10分)化簡:.19.(5分)已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.分別寫出圖中點A和點C的坐標(biāo);畫出△ABC繞點C按順時針方向旋轉(zhuǎn)90°后的△A′B′C′;求點A旋轉(zhuǎn)到點A′所經(jīng)過的路線長(結(jié)果保留π).20.(8分)如圖,在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B的直線與CD的延長線交于點F,AC∥BF.(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;(2)若tan∠F=,CD=a,請用a表示⊙O的半徑;(3)求證:GF2﹣GB2=DF?GF.21.(10分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數(shù).22.(10分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)23.(12分)如圖,在建筑物M的頂端A處測得大樓N頂端B點的仰角α=45°,同時測得大樓底端A點的俯角為β=30°.已知建筑物M的高CD=20米,求樓高AB為多少米?(≈1.732,結(jié)果精確到0.1米)24.(14分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關(guān)于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:由角的度數(shù)可以知道2、3中的兩個三角形的對應(yīng)邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據(jù)以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質(zhì),解答本題的關(guān)鍵是利用相似三角形的平移,求得線段的關(guān)系.2、A【解析】

由已知,AB=a,AB+BC=5,當(dāng)E在BC上時,如圖,可得△ABE∽△ECF,繼而根據(jù)相似三角形的性質(zhì)可得y=﹣,根據(jù)二次函數(shù)的性質(zhì)可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當(dāng)E在AB上時,y=時,x=,據(jù)此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當(dāng)E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當(dāng)x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當(dāng)y=時,=﹣,解得x1=,x2=,當(dāng)E在AB上時,y=時,x=3﹣=,故①②正確,故選A.【點睛】本題考查了二次函數(shù)的應(yīng)用,相似三角形的判定與性質(zhì),綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數(shù)的性質(zhì)以及相似三角形的判定與性質(zhì)是解題的關(guān)鍵.3、C【解析】

先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.4、D【解析】分析:根據(jù)冪的乘方計算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎(chǔ)題型.明白冪的計算法則是解決這個問題的關(guān)鍵.5、C【解析】

根據(jù)中心對稱圖形的定義依次判斷各項即可解答.【詳解】選項A、平行四邊形是中心對稱圖形;選項B、圓是中心對稱圖形;選項C、等邊三角形不是中心對稱圖形;選項D、正六邊形是中心對稱圖形;故選C.【點睛】本題考查了中心對稱圖形的判定,熟知中心對稱圖形的定義是解決問題的關(guān)鍵.6、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.7、C【解析】【分析】根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可得.【詳解】2018與-2018只有符號不同,由相反數(shù)的定義可得2018的相反數(shù)是-2018,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.8、A【解析】分析:依據(jù)AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據(jù)∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據(jù)△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和為180°.解決問題的關(guān)鍵是三角形外角性質(zhì)以及角平分線的定義的運用.9、C【解析】

根據(jù)分式和二次根式有意義的條件進行計算即可.【詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【點睛】本題考查了函數(shù)自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關(guān)鍵.10、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負(fù)半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點的坐標(biāo)是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(﹣5,y1)關(guān)于對稱軸的對稱點的坐標(biāo)是(3,y1),∵當(dāng)x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,∠BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據(jù)三角形內(nèi)角和定理得出關(guān)系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結(jié)論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點睛】本題主要考查等腰三角形的性質(zhì)及等邊三角形的性質(zhì)及垂直定義,解題的關(guān)鍵是根據(jù)三角形內(nèi)角和定理列出符合題意的簡易方程,從而求出結(jié)果.12、3【解析】

根據(jù)圓周角定理可求出∠AOB的度數(shù),設(shè)扇形半徑為x,從而列出關(guān)于x的方程,求出答案.【詳解】由題意可知:∠AOB=2∠ACB=2×40°=80°,設(shè)扇形半徑為x,故陰影部分的面積為πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合題意,舍去),故答案為3.【點睛】本題主要考查了圓周角定理以及扇形的面積求解,解本題的要點在于根據(jù)題意列出關(guān)于x的方程,從而得到答案.13、【解析】

根據(jù)題意可得陰影部分的面積等于△ABC的面積,因為△ABC的面積是菱形面積的一半,根據(jù)已知可求得菱形的面積則不難求得陰影部分的面積.【詳解】設(shè)AP,EF交于O點,∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.14、,.【解析】試題分析:當(dāng)點B的移動距離為時,∠C1BB1=60°,則∠ABC1=90°,根據(jù)有一直角的平行四邊形是矩形,可判定四邊形ABC1D1為矩形;當(dāng)點B的移動距離為時,D、B1兩點重合,根據(jù)對角線互相垂直平分的四邊形是菱形,可判定四邊形ABC1D1為菱形.試題解析:如圖:當(dāng)四邊形ABC1D是矩形時,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=,當(dāng)點B的移動距離為時,四邊形ABC1D1為矩形;當(dāng)四邊形ABC1D是菱形時,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=,當(dāng)點B的移動距離為時,四邊形ABC1D1為菱形.考點:1.菱形的判定;2.矩形的判定;3.平移的性質(zhì).15、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數(shù)基本性質(zhì)中的對稱軸公式;也可用配方法解決.16、4【解析】

分別過點、點作的垂線,垂足分別為點、點,根據(jù)是的中點得到為的中位線,然后設(shè),,,根據(jù),得到,最后根據(jù)面積求得,從而求得.【詳解】分別過點、點作的垂線,垂足分別為點、點,如圖點為的中點,為的中位線,,,,,,,,,.故答案為:.【點睛】本題考查了反比例函數(shù)的比例系數(shù)的幾何意義及三角形的中位線定理,關(guān)鍵是正確作出輔助線,掌握在反比例函數(shù)的圖象上任意一點象坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是,且保持不變.17、1.【解析】

求出AD=AB,設(shè)AD=AB=5x,AE=3x,則5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,【詳解】解:∵四邊形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴設(shè)AD=AB=5x,AE=3x,則5x﹣3x=4,x=1,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:在Rt△BDE中,故答案為:1.【點睛】本題考查了菱形的性質(zhì),勾股定理,解直角三角形的應(yīng)用,關(guān)鍵是求出DE的長.三、解答題(共7小題,滿分69分)18、【解析】

原式第一項利用完全平方公式化簡,第二項利用單項式乘多項式法則計算,去括號合并即可得到結(jié)果.【詳解】解:原式.19、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標(biāo)系中點的位置寫出點的坐標(biāo);(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)畫出旋轉(zhuǎn)后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則.考點:圖形的旋轉(zhuǎn)、扇形的弧長計算公式.20、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)根據(jù)等邊對等角可得∠OAB=∠OBA,然后根據(jù)OA⊥CD得到∠OAB+∠AGC=90°,從而推出∠FBG+∠OBA=90°,從而得到OB⊥FB,再根據(jù)切線的定義證明即可.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ACF=∠F,根據(jù)垂徑定理可得CE=CD=a,連接OC,設(shè)圓的半徑為r,表示出OE,然后利用勾股定理列式計算即可求出r.(3)連接BD,根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,從而求出△BDG和△FBG相似,根據(jù)相似三角形對應(yīng)邊成比例列式表示出BG2,然后代入等式左邊整理即可得證.【詳解】解:(1)證明:∵OA=OB,∴∠OAB=∠OBA.∵OA⊥CD,∴∠OAB+∠AGC=90°.又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°.∴OB⊥FB.∵AB是⊙O的弦,∴點B在⊙O上.∴BF是⊙O的切線.(2)∵AC∥BF,∴∠ACF=∠F.∵CD=a,OA⊥CD,∴CE=CD=a.∵tan∠F=,∴,即.解得.連接OC,設(shè)圓的半徑為r,則,在Rt△OCE中,,即,解得.(3)證明:連接BD,∵∠DBG=∠ACF,∠ACF=∠F(已證),∴∠DBG=∠F.又∵∠FGB=∠FGB,∴△BDG∽△FBG.∴,即GB2=DG?GF.∴GF2﹣GB2=GF2﹣DG?GF=GF(GF﹣DG)=GF?DF,即GF2﹣GB2=DF?GF.21、(1)證明見解析(2)18°【解析】

(1)根據(jù)HL證明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性質(zhì)及直角三角形兩銳角互余的性質(zhì)求解即可.【詳解】(1)證明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論