2024屆江西省婺源縣聯考中考沖刺卷數學試題含解析_第1頁
2024屆江西省婺源縣聯考中考沖刺卷數學試題含解析_第2頁
2024屆江西省婺源縣聯考中考沖刺卷數學試題含解析_第3頁
2024屆江西省婺源縣聯考中考沖刺卷數學試題含解析_第4頁
2024屆江西省婺源縣聯考中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省婺源縣聯考中考沖刺卷數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知E,B,F,C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.2.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.3.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關于這組數據的描述正確的是()A.最低溫度是32℃ B.眾數是35℃ C.中位數是34℃ D.平均數是33℃4.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.255.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為6.如圖,在正方形網格中建立平面直角坐標系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,17.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)8.如圖,是的外接圓,已知,則的大小為A. B. C. D.9.一組數據:1、2、2、3,若添加一個數據2,則發(fā)生變化的統(tǒng)計量是A.平均數 B.中位數 C.眾數 D.方差10.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數y=(x<0)的圖象經過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.12二、填空題(本大題共6個小題,每小題3分,共18分)11.等腰中,是BC邊上的高,且,則等腰底角的度數為__________.12.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結論正確的是________(只需填寫序號).13.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結論的序號都填上)14.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.15.點C在射線AB上,若AB=3,BC=2,則AC為_____.16.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構成的圖形的面積為__________.三、解答題(共8題,共72分)17.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO18.(8分)《九章算術》中有一道闡述“盈不足術”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數,物價各幾何?譯文為:現有一些人共同買一個物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個物品的價格是多少?請解答上述問題.19.(8分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.20.(8分)已知拋物線F:y=x1+bx+c的圖象經過坐標原點O,且與x軸另一交點為(﹣33(1)求拋物線F的解析式;(1)如圖1,直線l:y=33x+m(m>0)與拋物線F相交于點A(x1,y1)和點B(x1,y1)(點A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判斷△AA′B的形狀,并說明理由;②平面內是否存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形?若存在,求出點P的坐標;若不存在,請說明理由.21.(8分)一名在校大學生利用“互聯網+”自主創(chuàng)業(yè),銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?22.(10分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.23.(12分)已知直線y=mx+n(m≠0,且m,n為常數)與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.24.如圖,∠MON的邊OM上有兩點A、B在∠MON的內部求作一點P,使得點P到∠MON的兩邊的距離相等,且△PAB的周長最小.(保留作圖痕跡,不寫作法)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據AAS能證明≌,故C選項不符合題意;D.添加,可得,根據AAS能證明≌,故D選項不符合題意,故選B.【點睛】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.2、A【解析】

此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數與總情況數之比.根據題意得:,解得:a=1,經檢驗,a=1是原分式方程的解,故本題選A.3、D【解析】分析:將數據從小到大排列,由中位數及眾數、平均數的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數為33℃,中位數為33℃,平均數是=33℃.故選D.點睛:本題考查了眾數、中位數的知識,解答本題的關鍵是由折線統(tǒng)計圖得到最高氣溫的7個數據.4、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.5、B【解析】

配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.6、C【解析】

根據A點坐標即可建立平面直角坐標.【詳解】解:由A(0,2),B(1,1)可知原點的位置,

建立平面直角坐標系,如圖,

∴C(2,-1)

故選:C.【點睛】本題考查平面直角坐標系,解題的關鍵是建立直角坐標系,本題屬于基礎題型.7、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據勾股定理得到OD′==2,于是得到結論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題關鍵.8、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.9、D【解析】

解:A.原來數據的平均數是2,添加數字2后平均數仍為2,故A與要求不符;B.原來數據的中位數是2,添加數字2后中位數仍為2,故B與要求不符;C.原來數據的眾數是2,添加數字2后眾數仍為2,故C與要求不符;D.原來數據的方差==,添加數字2后的方差==,故方差發(fā)生了變化.故選D.10、B【解析】

根據勾股定理得到OA==5,根據菱形的性質得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征,菱形的性質,勾股定理,正確的識別圖形是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、,,【解析】

分三種情況:①點A是頂角頂點時,②點A是底角頂點,且AD在△ABC外部時,③點A是底角頂點,且AD在△ABC內部時,再結合直角三角形中,30°的角所對的直角邊等于斜邊的一半即可求解.【詳解】①如圖,若點A是頂角頂點時,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如圖,若點A是底角頂點,且AD在△ABC外部時,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如圖,若點A是底角頂點,且AD在△ABC內部時,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;綜上所述,△ABC底角的度數為45°或15°或75°;故答案為,,.【點睛】本題考查了等腰三角形的性質和直角三角形中30°的角所對的直角邊等于斜邊的一半的性質,解題的關鍵是要分情況討論.12、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質;2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質.13、②③④【解析】

①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據證明,得到,根據矩形的性質可得,故,又因為,故,故.③先證明,得到,再根據,得到,代換可得.④根據,可知當取最小值時,也取最小值,根據點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質,全等三角形與相似三角形的性質與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關知識點是解答關鍵.14、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.15、2或2.【解析】解:本題有兩種情形:(2)當點C在線段AB上時,如圖,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)當點C在線段AB的延長線上時,如圖,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案為2或2.點睛:在未畫圖類問題中,正確畫圖很重要,本題滲透了分類討論的思想,體現了思維的嚴密性,在今后解決類似的問題時,要防止漏解.16、12.2【解析】

∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.三、解答題(共8題,共72分)17、3【解析】試題分析:本題考查了相似三角形的判定與性質,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO18、共有7人,這個物品的價格是53元.【解析】

根據題意,找出等量關系,列出一元一次方程.【詳解】解:設共有x人,這個物品的價格是y元,解得答:共有7人,這個物品的價格是53元.【點睛】本題考查了二元一次方程的應用.19、(1);(2);(3).【解析】試題分析:(1)先利用勾股定理計算出AC=4,然后根據余切的定義求解;(2)根據余切的定義得到ctan60°=,然后把tan60°=代入計算即可;(3)作AH⊥BC于H,如圖2,先在Rt△ACH中利用余切的定義得到ctanC==2,則可設AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接著再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根據余弦的定義求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如圖2,在Rt△ACH中,ctanC==2,設AH=x,則CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考點:解直角三角形.20、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B為等邊三角形,理由見解析;②平面內存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標為(13,23)、(﹣【解析】

(1)根據點的坐標,利用待定系數法即可求出拋物線F的解析式;(1)將直線l的解析式代入拋物線F的解析式中,可求出x1、x1的值,利用一次函數圖象上點的坐標特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根據m的值可得出點A、B的坐標,利用對稱性求出點A′的坐標.①利用兩點間的距離公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B為等邊三角形;②根據等邊三角形的性質結合菱形的性質,可得出存在符合題意得點P,設點P的坐標為(x,y),分三種情況考慮:(i)當A′B為對角線時,根據菱形的性質(對角線互相平分)可求出點P的坐標;(ii)當AB為對角線時,根據菱形的性質(對角線互相平分)可求出點P的坐標;(iii)當AA′為對角線時,根據菱形的性質(對角線互相平分)可求出點P的坐標.綜上即可得出結論.【詳解】(1)∵拋物線y=x1+bx+c的圖象經過點(0,0)和(﹣33∴c=013-∴拋物線F的解析式為y=x1+33(1)將y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴點A的坐標為(﹣233,23∵點A′是點A關于原點O的對稱點,∴點A′的坐標為(233,﹣①△AA′B為等邊三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B為等邊三角形.②∵△AA′B為等邊三角形,∴存在符合題意的點P,且以點A、B、A′、P為頂點的菱形分三種情況,設點P的坐標為(x,y).(i)當A′B為對角線時,有x-2解得x=2∴點P的坐標為(13,23(ii)當AB為對角線時,有x=-2解得:x=-2∴點P的坐標為(﹣233,(iii)當AA′為對角線時,有x=-2解得:x=-2∴點P的坐標為(﹣23綜上所述:平面內存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形,點P的坐標為(13,23)、(﹣233【點睛】本題考查了待定系數法求二次函數解析式、一次函數圖象上點的坐標特征、等邊三角形的判定與性質以及菱形的判定與性質,解題的關鍵是:(1)根據點的坐標,利用待定系數法求出二次函數解析式;(1)將一次函數解析式代入二次函數解析式中求出x1、x1的值;(3)①利用勾股定理(兩點間的距離公式)求出AB、AA′、A′B的值;②分A′B為對角線、AB為對角線及AA′為對角線三種情況求出點P的坐標.21、(1)y=-x+40(10≤x≤16);(2)每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【解析】

根據題可設出一般式,再由圖中數據帶入可得答案,根據題目中的x的取值可得結果.②由總利潤=數量×單間商品的利潤可得函數式,可得解析式為一元二次式,配成頂點式可求出最大利潤時的銷售價,即可得出答案.【詳解】(1)y=-x+40(10≤x≤16).(2)根據題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當x<25時,W隨x的增大而增大∵10≤x≤16∴當x=16時,W取得最大值,最大值是144答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】熟悉掌握圖中所給信息以及列方程組是解決本題的關鍵.22、(1)證明見解析(2)1【解析】

(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質定理可以得到:∠OCP=90°,即OC⊥PC,即可證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論