![高斯小學(xué)奧數(shù)五年級上冊含答案-質(zhì)數(shù)與合數(shù)_第1頁](http://file4.renrendoc.com/view4/M01/1A/1E/wKhkGGY8I3SASReKAAFJCertCK4144.jpg)
![高斯小學(xué)奧數(shù)五年級上冊含答案-質(zhì)數(shù)與合數(shù)_第2頁](http://file4.renrendoc.com/view4/M01/1A/1E/wKhkGGY8I3SASReKAAFJCertCK41442.jpg)
![高斯小學(xué)奧數(shù)五年級上冊含答案-質(zhì)數(shù)與合數(shù)_第3頁](http://file4.renrendoc.com/view4/M01/1A/1E/wKhkGGY8I3SASReKAAFJCertCK41443.jpg)
![高斯小學(xué)奧數(shù)五年級上冊含答案-質(zhì)數(shù)與合數(shù)_第4頁](http://file4.renrendoc.com/view4/M01/1A/1E/wKhkGGY8I3SASReKAAFJCertCK41444.jpg)
![高斯小學(xué)奧數(shù)五年級上冊含答案-質(zhì)數(shù)與合數(shù)_第5頁](http://file4.renrendoc.com/view4/M01/1A/1E/wKhkGGY8I3SASReKAAFJCertCK41445.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第三講質(zhì)數(shù)與合數(shù)
什么是質(zhì)數(shù)?
每一個數(shù)都能寫成若干個數(shù)相乘的形式,考慮到任何一個數(shù)都能寫成若干個1乘以它本
身的形式,所以不考慮1作為乘數(shù)的情況:623-824222,
122634223……這些數(shù)都能拆成若干個不為1的數(shù)相乘的形式,我們把這樣的數(shù)稱為合數(shù).而像2,3,
7這些不能拆成若干個不為1的數(shù)相乘形式的數(shù),我們稱之為質(zhì)數(shù)?如果說得形象一點,質(zhì)數(shù)就是拆不
開”的數(shù),合數(shù)就是拆得開的數(shù).
嚴格說來,質(zhì)數(shù)就是只能被1和自身整除的數(shù):合數(shù)是除了1和它本身之外,還能被其它數(shù)整除的數(shù)
?注意,1既不是質(zhì)數(shù)也不是合數(shù).
我們先來看一個關(guān)于質(zhì)數(shù)的小問題,提高大家對質(zhì)數(shù)的熟悉程度:請寫出所有顛倒個位
十位之后還是質(zhì)數(shù)的兩位質(zhì)數(shù).
______________________________________________________(填寫在橫線上)
相信對100以內(nèi)的質(zhì)數(shù)比較熟悉的同學(xué),做這個題目會很輕松.質(zhì)數(shù)是我們后面學(xué)習(xí)的
基礎(chǔ),因此同學(xué)們一定要牢牢記住常見的質(zhì)數(shù).請同學(xué)們在下面的橫線上寫出100以內(nèi)的所
有質(zhì)數(shù):
同學(xué)們還可以這樣做:從大到小寫出100以內(nèi)的質(zhì)數(shù).如果你能一個不少地寫出來,
明你對100以內(nèi)的質(zhì)數(shù)確實掌握得很牢固了
在100以上還有無窮多個質(zhì)
fVWMMMNMNNMNNMMNMNNMMMNMMMMMMMNMNNMMNNMNHMMMMMW
當(dāng)然,同學(xué)們寫出的這些質(zhì)數(shù)只是質(zhì)數(shù)大軍中的冰山一角.
區(qū)分聯(lián)蝴放觸懶搬抑卸瞰I躥搬次找出對應(yīng)的漢字‘這句話就出來了?
F面是主試委員會為第六屆華杯賽寫的一首詩:
美少年華朋會友,幼長相親同切磋;
杯賽聯(lián)誼歡聲響,念一笑慰來者多;
九天九霄志凌云,九七共慶手相握;
聚起華夏中興力,同唱移山壯麗歌.
自然數(shù)N是一個兩位數(shù),它是一個質(zhì)數(shù),而且N的個位數(shù)字與十位數(shù)字都是質(zhì)數(shù),這樣的自然數(shù)有多
少個?
(1)如果兩個不同的質(zhì)數(shù)相加等于26,那么這兩個質(zhì)數(shù)的乘積可能是多少?請全部寫出.
(2)如果兩個不同的質(zhì)數(shù)相加等于25,那么這兩個質(zhì)數(shù)的乘積可能是多少?請全部寫出.
(3)三個互不相同的質(zhì)數(shù)相加,和為40,這三個質(zhì)數(shù)的乘
積可能是多少?請全部寫出.
相信對100以內(nèi)的質(zhì)數(shù)比較熟悉的同學(xué),做這個題目會很輕松.質(zhì)數(shù)是我們后面學(xué)習(xí)的
【分析】對于第1問,依次枚舉即可-可知這兩個不同的質(zhì)數(shù)一定都是奇數(shù)?那么后兩問中的質(zhì)數(shù)可以都是奇
數(shù)嗎?
如果三個互不相同的質(zhì)數(shù)相加,和為52,這三個質(zhì)數(shù)可能是多少?
通過前面的學(xué)習(xí),我們對質(zhì)數(shù)已經(jīng)有了基本了解.下面我們來學(xué)習(xí)這一講中最重要的內(nèi)
容:分解質(zhì)因數(shù)?分解質(zhì)因數(shù)是指把一個數(shù)寫成質(zhì)因數(shù)相乘的形式?如:30235>
1002255■28022257?同學(xué)們請注意:分解式應(yīng)該把質(zhì)因數(shù)按從小到
大的順序?qū)懞?,每個數(shù)分解質(zhì)因數(shù)的形式是唯一的.
分解質(zhì)因數(shù)的方法一般是短除法,如下圖所示,我們將30分解質(zhì)因數(shù),在計算的過程
中要善用各種特殊數(shù)的整除特性.
能整除
30相除后得
22
100在分解質(zhì)因數(shù)時也可以寫成:10025;280在分解質(zhì)因數(shù)時也可以寫成
3
280257?這種寫法更簡潔更方便,其中位于質(zhì)因數(shù)右上角,表示質(zhì)因數(shù)個數(shù)的數(shù)
?0257
叫作指數(shù),如:
這里280的分解式中5和7的指數(shù)都是1,寫的時候可以省略.
如何確定一個大數(shù)是不是質(zhì)數(shù)呢?我們要判斷197是不是質(zhì)數(shù),難道需要一一驗算197
以內(nèi)的所有質(zhì)數(shù)嗎?
同學(xué)們不用擔(dān)心,數(shù)學(xué)家們早就為我們準備了簡單的方法,只需要試很少的幾個就能判
斷.例如我們要判斷197是否為質(zhì)數(shù),只需要驗算15以內(nèi)的質(zhì)數(shù)就足夠了!因為
1515225比197大-類似的,如果我們要判斷2011是不是質(zhì)數(shù),只需要驗算45以內(nèi)
的質(zhì)數(shù),因為45452025比2011大-有了這個方法,同學(xué)們以后判斷一個大數(shù)是不是
質(zhì)數(shù)就非常方便了.
請把下面的數(shù)分解質(zhì)因數(shù):
3
(1)360;(2)539;(3)999;(4)10101.
請把下面的數(shù)分解質(zhì)因數(shù):
「分析」將一個數(shù)分解質(zhì)因數(shù),可以從最小的質(zhì)數(shù)開始,一個一個去試商,寫成短除的形式.
(1)373;(2)12660.
在整數(shù)問題中,有一類特殊的問題,專求乘積末尾連續(xù)0的個數(shù).解決這類問題的方法同樣是質(zhì)因數(shù)分
解?下面我們來看一個例題.
0?
【分析】乘積的末尾要出現(xiàn)一個0,只需要乘數(shù)中湊出一個10,那么能湊出來幾個10,末尾就有多少個連續(xù)
的0?注意到1025,我們只需要計算這個算式中含有的質(zhì)因數(shù)2和5的個數(shù)就可以了.
算式123L30的計算結(jié)果的末尾有多少個連續(xù)的0?
分解質(zhì)因數(shù)是學(xué)習(xí)數(shù)論問題時非常重要的方法,大家一定要能熟練的將一個數(shù)分解質(zhì)因
數(shù)-這應(yīng)該作為一項基本的能力來培養(yǎng).下面我們來看看如何利用分解質(zhì)因數(shù)來解決實際的
問題.
三個連續(xù)自然數(shù)的乘積等于39270,那么這三個數(shù)的和等于多少?
「分析」39270是三個自然數(shù)的乘積,于是先將39270分解質(zhì)因數(shù),再對這些質(zhì)因數(shù)進行適
當(dāng)?shù)慕M合,湊出題目中的三個連續(xù)自然數(shù).由于連續(xù)自然數(shù)相互之間比較接近,所以湊的時
候也必須盡量接近.
360與?個三位數(shù)的乘積是完全平方數(shù),這個三位數(shù)最小是多少?
【分析】完全平方數(shù)是兩個相同數(shù)的乘積,那么分解后它的每個質(zhì)因數(shù)的次數(shù)都是偶數(shù).而
32
360235,它不是一個平方數(shù).它最小再乘上多少,結(jié)果就是平方數(shù)了?
通過上面例題的講解,相信大家能體會到分解質(zhì)因數(shù)的好處.它就像手術(shù)刀?樣,把整數(shù)解剖開來,讓我們把
整數(shù)的組成結(jié)構(gòu)看得一清二楚.很多看似復(fù)雜的問題,如果從分解質(zhì)因數(shù)的角度來看,就會變得非常簡單.
質(zhì)數(shù)有無窮個嗎?1
在正整數(shù)里走得越遠,我們就發(fā)現(xiàn)質(zhì)數(shù)變得越來越稀少.有人可能會問:質(zhì)數(shù)出現(xiàn)頻率
越來越小,它們會不會在某處終止呢?會不會從某個數(shù)開始之后就沒有質(zhì)數(shù)了呢?
早在公元前300年左右,歐幾里得就第一次證明了質(zhì)數(shù)有無窮多個.他用的是如下的反
證法:
設(shè)n代表最后一個質(zhì)數(shù),那么從2到n的所有質(zhì)數(shù)的積是2357Ln.將這個積加1稱
為k,因為2,3,5,7,11,…,n都不能整除k,所以k必然含有一個更大的質(zhì)因數(shù)!這與n
代表最后一個質(zhì)數(shù)相矛盾!
作業(yè)
1.(1)如果兩個不同的質(zhì)數(shù)相加等于39■那么這兩個質(zhì)數(shù)的乘積是多少?
(2)三個互不相同的質(zhì)數(shù)相加,和為30,這三個質(zhì)數(shù)的乘積是多少?
2.自然數(shù)49,87-101-103-121中,哪些是質(zhì)數(shù)?
3.請把下面的數(shù)分解質(zhì)因數(shù):
(1)240;(2)1080.
4.三個連續(xù)自然數(shù)的乘積為336,則這三個數(shù)的和是多少?
5.算式123L35的計算結(jié)果的末尾有多少個連續(xù)的0?
第三講質(zhì)數(shù)與合數(shù)
例題1.答案:少年朋友親切聯(lián)歡一九九七相聚中山
詳解:1-56中的質(zhì)數(shù)有2、3、5、7、11、13、17、19、23、29、31、
37、41、43、47、53共16個.
例題2.答案:(1)69、133;(2)46;(3)434詳解:(1)26可以拆成3與23
的和,或者7與19的和;(2)25只能拆成2和23的和;(3)三個數(shù)的和是
偶數(shù),可以是三個偶數(shù),或者一偶兩奇.考慮到質(zhì)數(shù)中只有2是偶數(shù),可知
一定是一偶兩奇,且偶數(shù)是2.另外兩個奇數(shù)是7和31.
例題3.答案:(1)36023325;(2)539(4)101017211;(3)9993337;
371337.
例題4.答案:24
詳解:末尾0的個數(shù)與算式結(jié)果所含質(zhì)因數(shù)2和5的個數(shù)有關(guān),結(jié)果中質(zhì)
因數(shù)的個數(shù)又與乘數(shù)中質(zhì)因數(shù)的個數(shù)有關(guān).因為2的個數(shù)要比5的個數(shù)多,
所以0的個數(shù)等于5的個數(shù).乘數(shù)中5的倍數(shù)有20個,25的倍數(shù)有4個,
所以質(zhì)因數(shù)5的個數(shù)有20424個.末尾有24個連續(xù)的0.
例題5答案:102
詳解:3927023571117.考慮其中最大的質(zhì)因數(shù)17,三個自然數(shù)中一定有
17的倍數(shù).如果是17,那么一定有16或18.這不可能.如果是34,另外
兩個數(shù)是33和35,正好滿足.333435102.
例題6.答案:160
詳解:完全平方數(shù)的每個質(zhì)因數(shù)的次數(shù)一定是偶數(shù).而36023325,至少要再
乘上2510才是一個平方數(shù).題目要求是三位數(shù),即
3601Q,一」是一個平方數(shù).可知空格上也要填入一個平方數(shù),最三位數(shù)
小要填16?要乘的三位數(shù)最小是160?
練習(xí)1.答案:23、37、53、73
簡答:一位數(shù)中的質(zhì)數(shù)只有2、3、5、7?而N的個位數(shù)字只能是3和7,
分類枚舉即可?
練習(xí)2.答案:2、3、47
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源發(fā)電站規(guī)劃設(shè)計合同范本
- 2025年度農(nóng)業(yè)機械購置合同
- 2025年度物流信息系統(tǒng)集成與維護合同
- 2025年度幼兒園戶外游戲場地設(shè)計與施工合同
- 2025年度內(nèi)保溫工程設(shè)計與施工監(jiān)理合同
- 2025年借款合同范本擔(dān)保人合同履行報告
- 2025年度農(nóng)民工勞務(wù)合同書(新型城鎮(zhèn)化建設(shè))
- 電子商務(wù)在中小企業(yè)中的應(yīng)用與效果
- 2025年度企業(yè)員工職業(yè)發(fā)展規(guī)劃與培養(yǎng)合同
- 年“春節(jié)”前后安全自查系列用表完整
- 社交禮儀-儀態(tài)禮儀
- 2024暑期夏日露營潮趣互動音樂節(jié)(唱享潮夏旋律季)活動策劃方案
- 臨床成人ICU患者外周動脈導(dǎo)管管理要點
- 2024年長沙衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案
- 《讓學(xué)生創(chuàng)造著長大》讀書心得
- 江蘇省連云港市灌南華僑高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析
- 畢業(yè)旅游活動設(shè)計與實施方案
- 政企業(yè)務(wù)部門培訓(xùn)
- 2024年高考歷史:全3冊核心知識梳理和大事年表
- 非標設(shè)備方案
評論
0/150
提交評論