陜西省咸陽市武功縣2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第1頁
陜西省咸陽市武功縣2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第2頁
陜西省咸陽市武功縣2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第3頁
陜西省咸陽市武功縣2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第4頁
陜西省咸陽市武功縣2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省咸陽市武功縣2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知盒中有3個(gè)紅球,3個(gè)黃球,3個(gè)白球,且每種顏色的三個(gè)球均按,,編號(hào),現(xiàn)從中摸出3個(gè)球(除顏色與編號(hào)外球沒有區(qū)別),則恰好不同時(shí)包含字母,,的概率為()A. B. C. D.2.已知非零向量,滿足,,則與的夾角為()A. B. C. D.3.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.4.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁5.若變量,滿足,則的最大值為()A.3 B.2 C. D.106.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.7.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長度之和的最大值為.A. B. C. D.8.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.69.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.10.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.11.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.12.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.14二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足,則目標(biāo)函數(shù)的最小值為__________.14.在平面直角坐標(biāo)系中,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為________.15.已知函數(shù)的圖象在處的切線斜率為,則______.16.已知數(shù)列中,為其前項(xiàng)和,,,則_________,_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某商場為改進(jìn)服務(wù)質(zhì)量,隨機(jī)抽取了200名進(jìn)場購物的顧客進(jìn)行問卷調(diào)查.調(diào)查后,就顧客“購物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān)?(2)為答謝顧客,該商場對某款價(jià)格為100元/件的商品開展促銷活動(dòng).據(jù)統(tǒng)計(jì),在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應(yīng)事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學(xué)期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn).(1)若的最小值為,求實(shí)數(shù)的值;(2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積.19.(12分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).20.(12分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,21.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開展愛國衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.22.(10分)已知的內(nèi)角、、的對邊分別為、、,滿足.有三個(gè)條件:①;②;③.其中三個(gè)條件中僅有兩個(gè)正確,請選出正確的條件完成下面兩個(gè)問題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

首先求出基本事件總數(shù),則事件“恰好不同時(shí)包含字母,,”的對立事件為“取出的3個(gè)球的編號(hào)恰好為字母,,”,記事件“恰好不同時(shí)包含字母,,”為,利用對立事件的概率公式計(jì)算可得;【詳解】解:從9個(gè)球中摸出3個(gè)球,則基本事件總數(shù)為(個(gè)),則事件“恰好不同時(shí)包含字母,,”的對立事件為“取出的3個(gè)球的編號(hào)恰好為字母,,”記事件“恰好不同時(shí)包含字母,,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識(shí),解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.2、B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.3、A【解析】

根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.4、A【解析】

可采用假設(shè)法進(jìn)行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個(gè)人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么丁:我沒有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點(diǎn)睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進(jìn)行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.5、D【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.6、A【解析】

陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計(jì)算相應(yīng)概率.【詳解】因?yàn)殛枖?shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個(gè),滿足差的絕對值為5的有:共個(gè),則.故選:A.【點(diǎn)睛】本題考查實(shí)際背景下古典概型的計(jì)算,難度一般.古典概型的概率計(jì)算公式:.7、C【解析】

①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個(gè)面上的正投影長度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)椋c點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長度為;②正確,因?yàn)槊婷?,所以點(diǎn)必須在面對角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最小(為下底面面對角線的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個(gè)面上的正投影長度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.8、D【解析】

作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)椋詾榫€段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.9、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.10、C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)椋捎谠诙x域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.11、C【解析】

利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)椋Y(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.12、A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿足對應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當(dāng)直線yx經(jīng)過點(diǎn)A時(shí),直線yx的縱截距最小,此時(shí)z最?。桑肁(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,是基礎(chǔ)題14、【解析】

求出雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)坐標(biāo),并將該交點(diǎn)代入拋物線的方程,即可求出實(shí)數(shù)的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準(zhǔn)線方程為,漸近線方程為,所以,該雙曲線右準(zhǔn)線與漸近線的交點(diǎn)為.由題意得,解得.故答案為:.【點(diǎn)睛】本題考查利用拋物線上的點(diǎn)求參數(shù),涉及到雙曲線的準(zhǔn)線與漸近線方程的應(yīng)用,考查計(jì)算能力,屬于中等題.15、【解析】

先對函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問題,屬于基礎(chǔ)題.16、8(寫為也得分)【解析】

由,得,.當(dāng)時(shí),,所以,所以的奇數(shù)項(xiàng)是以1為首項(xiàng),以2為公比的等比數(shù)列;其偶數(shù)項(xiàng)是以2為首項(xiàng),以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有97.5%的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān);(2)67元,見解析.【解析】

(1)根據(jù)表格數(shù)據(jù)代入公式,結(jié)合臨界值即得解;(2)的可能取值為40,60,80,1,根據(jù)題意依次計(jì)算概率,列出分布列,求數(shù)學(xué)期望即可.【詳解】(1)由題得,所以,有97.5%的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān).(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點(diǎn)睛】本題考查了統(tǒng)計(jì)和概率綜合,考查了列聯(lián)表,隨機(jī)變量的分布列和數(shù)學(xué)期望等知識(shí)點(diǎn),考查了學(xué)生數(shù)據(jù)處理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18、(1)的值為或.(2)【解析】

(1)分類討論,當(dāng)時(shí),線段與拋物線沒有公共點(diǎn),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,當(dāng)三點(diǎn)共線時(shí),能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時(shí),線段與拋物線有公共點(diǎn),利用兩點(diǎn)間的距離公式即可求解.(2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點(diǎn),即時(shí),設(shè)點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)共線時(shí),的最小值為,此時(shí)若線段與拋物線有公共點(diǎn),即時(shí),則三點(diǎn)共線時(shí),的最小值為:,此時(shí)綜上,實(shí)數(shù)的值為或.因?yàn)?,所以軸且設(shè),則,代入拋物線的方程解得于是,所以【點(diǎn)睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關(guān)系中的面積問題,屬于中檔題.19、(1);(2)見解析;(3)見解析【解析】

(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉(zhuǎn)化為證明有唯一實(shí)數(shù)解,對求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實(shí)數(shù)解;當(dāng)時(shí),;當(dāng)時(shí),;即對于任意實(shí)數(shù),一定有解;;當(dāng)時(shí),有兩個(gè)極值點(diǎn);函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時(shí)恒成立;只需;令,其中一個(gè)正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.20、(1);(2)117人;(3)分布列見解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關(guān)于的線性回歸方程;(2)根據(jù)回歸直線方程計(jì)算公式,計(jì)算可得人數(shù);(3)和被選中的人數(shù)分別為2和3,利用超幾何分布分布列的計(jì)算公式,計(jì)算出的分布列,并求得數(shù)學(xué)期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當(dāng)時(shí),所以預(yù)測2019年高考該??既朊5娜藬?shù)約為117人(3)由題知和被選中的人數(shù)分別為2和3,進(jìn)行演講的兩人是2018年畢

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論