四川省眉山市仁壽縣文宮中學2024屆高三第三次模擬考試數學試卷含解析_第1頁
四川省眉山市仁壽縣文宮中學2024屆高三第三次模擬考試數學試卷含解析_第2頁
四川省眉山市仁壽縣文宮中學2024屆高三第三次模擬考試數學試卷含解析_第3頁
四川省眉山市仁壽縣文宮中學2024屆高三第三次模擬考試數學試卷含解析_第4頁
四川省眉山市仁壽縣文宮中學2024屆高三第三次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山市仁壽縣文宮中學2024屆高三第三次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,點是上一點,,則()A. B. C. D.2.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.3.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.4.已知集合,集合,則().A. B.C. D.5.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.6.函數的圖象可能是()A. B. C. D.7.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立8.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.9.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區(qū)間上零點的個數為()A.9 B.10 C.18 D.2010.設,則,則()A. B. C. D.11.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.12.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為___________.14.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.15.設第一象限內的點(x,y)滿足約束條件,若目標函數z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.16.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是:(是參數).(1)若直線l與曲線C相交于A、B兩點,且,試求實數m值.(2)設為曲線上任意一點,求的取值范圍.18.(12分)若函數為奇函數,且時有極小值.(1)求實數的值與實數的取值范圍;(2)若恒成立,求實數的取值范圍.19.(12分)過點作傾斜角為的直線與曲線(為參數)相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.20.(12分)已知函數.(1)求的極值;(2)若,且,證明:.21.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.22.(10分)已知函數.(1)若,解關于的不等式;(2)若當時,恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.2、C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.3、C【解析】

畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,

該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.4、A【解析】

算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.5、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.6、A【解析】

先判斷函數的奇偶性,以及該函數在區(qū)間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.7、A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題.8、D【解析】

如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.9、B【解析】

由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區(qū)間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區(qū)間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區(qū)間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.10、A【解析】

根據換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數的運算,屬于中檔題.11、B【解析】

根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.12、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.14、【解析】

轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.15、【解析】不等式表示的平面區(qū)域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.16、【解析】

求函數的導數,利用導數的幾何意義即可求出切線方程.【詳解】解:∵,

∴,

則,

又,即切點坐標為(1,0),

則函數在點(1,f(1))處的切線方程為,

即,

故答案為:.【點睛】本題主要考查導數的幾何意義,根據導數和切線斜率之間的關系是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】

(1)將曲線的極坐標方程化為直角坐標方程,在直角坐標條件下求出曲線的圓心坐標和半徑,將直線的參數方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數方程形式,代入由三角公式化簡可求其取值范圍.【詳解】(1)曲線C的極坐標方程是化為直角坐標方程為:直線的直角坐標方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數方程為:為曲線上任意一點,的取值范圍是18、(1),;(2)【解析】

(1)由奇函數可知在定義域上恒成立,由此建立方程,即可求出實數的值;對函數進行求導,,通過導數求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數可知在上為單調減函數,由可得,從而可求實數的取值范圍.【詳解】(1)由函數為奇函數,得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調遞增,無極值點;所以,解得,取,則又函數的圖象在區(qū)間上連續(xù)不間斷,故由函數零點存在性定理知在區(qū)間上,存在為函數的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數,所以,當時,,即恒成立,故在上為單調減函數,其中.則可轉化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數求函數的最值,考查了奇函數的定義,考查了轉化的思想.對于恒成立的問題,常轉化為求的最小值,使;對于恒成立的問題,常轉化為求的最大值,使.19、(1);(2).【解析】

(1)將曲線的參數方程消參得到普通方程;(2)寫出直線MN的參數方程,將參數方程代入曲線方程,并將其化為一個關于的一元二次方程,根據,結合韋達定理和余弦函數的性質,即可求出的最小值.【詳解】(1)由曲線C的參數方程(是參數),可得,即曲線C的一般方程為.(2)直線MN的參數方程為(t為參數),將直線MN的參數方程代入曲線,得,整理得,設M,N對應的對數分別為,,則,當時,取得最小值為.【點睛】該題考查的是有關參數方程的問題,涉及到的知識點有參數方程向普通方程的轉化,直線的參數方程的應用,屬于簡單題目.20、(1)極大值為;極小值為;(2)見解析【解析】

(1)對函數求導,進而可求出單調性,從而可求出函數的極值;(2)構造函數,求導并判斷單調性可得,從而在上恒成立,再結合,,可得到,即可證明結論成立.【詳解】(1)函數的定義域為,,所以當時,;當時,,則的單調遞增區(qū)間為和,單調遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設函數,則,,則在上恒成立,即在上單調遞增,故,又,則,即在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論