![四川省某重點(diǎn)中學(xué)2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view4/M02/02/21/wKhkGGZCzhGAHSifAAJJ670qkcM743.jpg)
![四川省某重點(diǎn)中學(xué)2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view4/M02/02/21/wKhkGGZCzhGAHSifAAJJ670qkcM7432.jpg)
![四川省某重點(diǎn)中學(xué)2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view4/M02/02/21/wKhkGGZCzhGAHSifAAJJ670qkcM7433.jpg)
![四川省某重點(diǎn)中學(xué)2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view4/M02/02/21/wKhkGGZCzhGAHSifAAJJ670qkcM7434.jpg)
![四川省某重點(diǎn)中學(xué)2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view4/M02/02/21/wKhkGGZCzhGAHSifAAJJ670qkcM7435.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省某重點(diǎn)中學(xué)2023-2024學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.42.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.3.函數(shù)f(x)=lnA. B. C. D.4.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.已知實(shí)數(shù)x,y滿足約束條件,若的最大值為2,則實(shí)數(shù)k的值為()A.1 B. C.2 D.6.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.8.函數(shù)在的圖像大致為A. B. C. D.9.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.10.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.二項(xiàng)式的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.36012.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,其中,為正的常數(shù),且,則的值為_(kāi)______.14.在一次體育水平測(cè)試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績(jī)的優(yōu)秀率為70%,女生成績(jī)的優(yōu)秀率為50%;乙校男生成績(jī)的優(yōu)秀率為60%,女生成績(jī)的優(yōu)秀率為40%.對(duì)于此次測(cè)試,給出下列三個(gè)結(jié)論:①甲校學(xué)生成績(jī)的優(yōu)秀率大于乙校學(xué)生成績(jī)的優(yōu)秀率;②甲、乙兩校所有男生成績(jī)的優(yōu)秀率大于甲、乙兩校所有女生成績(jī)的優(yōu)秀率;③甲校學(xué)生成績(jī)的優(yōu)秀率與甲、乙兩校所有學(xué)生成績(jī)的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號(hào)是____________.15.已知函數(shù),則過(guò)原點(diǎn)且與曲線相切的直線方程為_(kāi)___________.16.直線與拋物線交于兩點(diǎn),若,則弦的中點(diǎn)到直線的距離等于________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)移動(dòng)支付(支付寶及微信支付)已經(jīng)漸漸成為人們購(gòu)物消費(fèi)的一種支付方式,為調(diào)查市民使用移動(dòng)支付的年齡結(jié)構(gòu),隨機(jī)對(duì)100位市民做問(wèn)卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請(qǐng)說(shuō)明在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動(dòng)支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問(wèn)卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎(jiǎng)勵(lì),設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)18.(12分)為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問(wèn)卷作答隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān)?男女總計(jì)合格不合格總計(jì)(Ⅱ)從上述樣本中,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),記來(lái)自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對(duì)于,使得成立,求的取值范圍.21.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.22.(10分)已知函數(shù).(Ⅰ)已知是的一個(gè)極值點(diǎn),求曲線在處的切線方程(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.3、C【解析】因?yàn)閒x=lnx2-4x+4x-23=4、C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點(diǎn)睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.5、B【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.6、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).7、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過(guò)圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過(guò)作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問(wèn)題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.8、B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.9、C【解析】
轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過(guò)原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.10、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).11、A【解析】試題分析:因?yàn)榈恼归_(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.12、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把已知等式變形,展開(kāi)兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點(diǎn)睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14、②③【解析】
根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因?yàn)榧滓覂尚5哪猩膬?yōu)秀率均大于女生成績(jī)的優(yōu)秀率,故甲、乙兩校所有男生成績(jī)的優(yōu)秀率大于甲、乙兩校所有女生成績(jī)的優(yōu)秀率,故②正確;因?yàn)椴荒艽_定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績(jī)的優(yōu)秀率與甲、乙兩校所有學(xué)生成績(jī)的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點(diǎn)睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.15、【解析】
設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點(diǎn)的切線方程,將原點(diǎn)代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為,,,,則曲線在點(diǎn)處的切線方程為,由于該直線過(guò)原點(diǎn),則,得,因此,則過(guò)原點(diǎn)且與曲線相切的直線方程為,故答案為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查過(guò)點(diǎn)作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點(diǎn)坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過(guò)點(diǎn)的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點(diǎn)的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.16、【解析】
由已知可知直線過(guò)拋物線的焦點(diǎn),求出弦的中點(diǎn)到拋物線準(zhǔn)線的距離,進(jìn)一步得到弦的中點(diǎn)到直線的距離.【詳解】解:如圖,直線過(guò)定點(diǎn),,而拋物線的焦點(diǎn)為,,弦的中點(diǎn)到準(zhǔn)線的距離為,則弦的中點(diǎn)到直線的距離等于.故答案為:.【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)列聯(lián)表見(jiàn)解析,在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡有關(guān);(2)分布列見(jiàn)解析,期望為.【解析】
(1)根據(jù)題中所給的條件補(bǔ)全列聯(lián)表,根據(jù)列聯(lián)表求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)首先確定的取值,求出相應(yīng)的概率,可得分布列和數(shù)學(xué)期望.【詳解】(1)根據(jù)題意及列聯(lián)表可得完整的列聯(lián)表如下:35歲以下(含35歲)35歲以上合計(jì)使用移動(dòng)支付401050不使用移動(dòng)支付104050合計(jì)5050100根據(jù)公式可得,所以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)根據(jù)分層抽樣,可知35歲以下(含35歲)的人數(shù)為8人,35歲以上的有2人,所以獲得獎(jiǎng)勵(lì)的35歲以下(含35歲)的人數(shù)為,則的可能為1,2,3,且,,,其分布列為123.【點(diǎn)睛】獨(dú)立性檢驗(yàn)依據(jù)的值結(jié)合附表數(shù)據(jù)進(jìn)行判斷,另外,離散型隨機(jī)變量的分布列,在求解的過(guò)程中,注意變量的取值以及對(duì)應(yīng)的概率要計(jì)算正確,注意離散型隨機(jī)變量的期望公式的使用,屬于中檔題目.18、(Ⅰ)填表見(jiàn)解析,有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān);(Ⅱ)分布列見(jiàn)解析,【解析】
(Ⅰ)根據(jù)莖葉圖填寫(xiě)列聯(lián)表,計(jì)算得到答案.(Ⅱ),計(jì)算,,,得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計(jì)合格101626不合格10414總計(jì)202040,故有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.19、(1)(2)證明見(jiàn)解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)?,,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時(shí),,,單調(diào)遞增,當(dāng),時(shí),,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.20、(1)當(dāng)時(shí),在上增;當(dāng)時(shí),在上減,在上增(2)【解析】
(1)求出導(dǎo)函數(shù),分類討論確定的正負(fù),確定單調(diào)區(qū)間;(2)題意說(shuō)明,利用導(dǎo)數(shù)求出的最小值,由(1)可得的最小值,從而得出結(jié)論.【詳解】解:(1)定義域?yàn)楫?dāng)時(shí),即在上增;當(dāng)時(shí),即得得綜上所述,當(dāng)時(shí),在上增;當(dāng)時(shí),在上減,在上增(2)由題在上增由(1)當(dāng)時(shí),在上增,所以此時(shí)無(wú)最小值;當(dāng)時(shí),在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度工業(yè)機(jī)器人購(gòu)銷(xiāo)合同范本
- 2025年度進(jìn)口農(nóng)產(chǎn)品追溯體系建立與供應(yīng)鏈合同
- 2025年度家用空調(diào)銷(xiāo)售與售后服務(wù)合同范本
- 2025年度家電維修售后服務(wù)滿意度提升服務(wù)合同范本
- 2025年度房地產(chǎn)開(kāi)發(fā)項(xiàng)目驗(yàn)收?qǐng)?bào)告合同
- 2025年度教育培訓(xùn)機(jī)構(gòu)兼職翻譯服務(wù)合同
- 2025年度裝配式建筑生產(chǎn)基地建設(shè)項(xiàng)目施工合同
- 2025年度婚姻家庭財(cái)產(chǎn)保全與執(zhí)行合同樣板
- 2025年度房地產(chǎn)項(xiàng)目施工人員簡(jiǎn)易勞動(dòng)合同模板
- 2025年度建筑裝飾材料綠色采購(gòu)與供應(yīng)鏈管理合同范本
- 二零二五年度大型自動(dòng)化設(shè)備買(mǎi)賣(mài)合同模板2篇
- 2024版金礦居間合同協(xié)議書(shū)
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語(yǔ)試題(含解析無(wú)聽(tīng)力音頻有聽(tīng)力原文)
- GA/T 2145-2024法庭科學(xué)涉火案件物證檢驗(yàn)實(shí)驗(yàn)室建設(shè)技術(shù)規(guī)范
- 2025內(nèi)蒙古匯能煤化工限公司招聘300人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年中國(guó)融通資產(chǎn)管理集團(tuán)限公司春季招聘(511人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 寵物護(hù)理行業(yè)客戶回訪制度構(gòu)建
- 電廠檢修管理
- 《SPIN銷(xiāo)售法課件》課件
- 機(jī)動(dòng)車(chē)屬性鑒定申請(qǐng)書(shū)
- 2024年中考語(yǔ)文試題分類匯編:非連續(xù)性文本閱讀(學(xué)生版)
評(píng)論
0/150
提交評(píng)論