




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省泰州市重點中學2024屆中考四模數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關(guān)系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y32.撫順市中小學機器人科技大賽中,有7名學生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學生成績的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差3.如圖,二次函數(shù)的圖象開口向下,且經(jīng)過第三象限的點若點P的橫坐標為,則一次函數(shù)的圖象大致是A. B. C. D.4.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.5.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(
)A.
B.C.
D.6.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣67.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.8.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.9.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(
)A.2cm2
B.3cm2
C.4cm2
D.5cm210.一次函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.把16a3﹣ab2因式分解_____.12.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________13.分解因式:__________.14.某籃球架的側(cè)面示意圖如圖所示,現(xiàn)測得如下數(shù)據(jù):底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側(cè),與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈).15.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)16.兩個反比例函數(shù)y=kx和y=1x在第一象限內(nèi)的圖象如圖所示,點P在y=kx的圖象上,PC⊥x軸于點C,交三、解答題(共8題,共72分)17.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.18.(8分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.19.(8分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應(yīng)沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結(jié)果保留整數(shù))(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)20.(8分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關(guān)于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.21.(8分)我國滬深股市交易中,如果買、賣一次股票均需付交易金額的作費用.張先生以每股5元的價格買入“西昌電力”股票1000股,若他期望獲利不低于1000元,問他至少要等到該股票漲到每股多少元時才能賣出?(精確到0.01元)22.(10分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.23.(12分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?24.計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
作出反比例函數(shù)的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.2、A【解析】
7人成績的中位數(shù)是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有7個人,且他們的分數(shù)互不相同,第4的成績是中位數(shù),要判斷是否進入前4名,故應(yīng)知道中位數(shù)的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關(guān)的定義是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)二次函數(shù)的圖象可以判斷a、b、的正負情況,從而可以得到一次函數(shù)經(jīng)過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數(shù)的圖象可知,,,當時,,的圖象經(jīng)過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì),認真識圖,會用函數(shù)的思想、數(shù)形結(jié)合思想解答問題是關(guān)鍵.4、C【解析】
設(shè)I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設(shè)I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應(yīng)用,能夠根據(jù)題意列出方程是解題的關(guān)鍵.5、D【解析】分析:根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.6、C【解析】
分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關(guān)鍵.7、B【解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關(guān)鍵.8、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.9、C【解析】
延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點睛】本題考查了三角形面積和全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是求出S△PBC=S△PBE+S△PCE=12S△10、B【解析】
由二次函數(shù),可得函數(shù)圖像經(jīng)過一、三、四象限,所以不經(jīng)過第二象限【詳解】解:∵,∴函數(shù)圖象一定經(jīng)過一、三象限;又∵,函數(shù)與y軸交于y軸負半軸,
∴函數(shù)經(jīng)過一、三、四象限,不經(jīng)過第二象限故選B【點睛】此題考查一次函數(shù)的性質(zhì),要熟記一次函數(shù)的k、b對函數(shù)圖象位置的影響二、填空題(本大題共6個小題,每小題3分,共18分)11、a(4a+b)(4a﹣b)【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案為:a(4a+b)(4a-b).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.12、75°【解析】
先根據(jù)同旁內(nèi)角互補,兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.13、a(a-4)2【解析】
首先提取公因式a,進而利用完全平方公式分解因式得出即可.【詳解】故答案為:【點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關(guān)鍵.分解一定要徹底.14、1.1.【解析】
過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據(jù)已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.【點睛】本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.15、9.1【解析】
建立直角坐標系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設(shè)拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數(shù)的簡單應(yīng)用,能夠建立直角坐標系解出二次函數(shù)解析式是本題關(guān)鍵16、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數(shù)圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發(fā)生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化.③PA與PB始終相等;錯誤,不一定,只有當四邊形OCPD為正方形時滿足PA=PB.④當點A是PC的中點時,點B一定是PD的中點.正確,當點A是PC的中點時,k=2,則此時點B也一定是PD的中點.故一定正確的是①②④三、解答題(共8題,共72分)17、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】
(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標,用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標為m,點M在AC上,∴M點的坐標為(m,).∵點P的橫坐標為m,點P在拋物線上,∴點P的坐標為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.18、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標代入解析式中即可.(2)首先根據(jù)拋物線的解析式確定A點坐標,然后通過證明△ABC是直角三角形來推導出直徑AB和圓心的位置,由此確定圓心坐標.(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標代入解析式中即可.(2)通過求出A,B,C三點坐標,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標.(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數(shù),從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數(shù)解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設(shè)直線l∥BC,則該直線的解析式可表示為:y=x+b,當直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB為斜邊的直角三角形,△ABC的外接圓的圓心是AB的中點,△ABC的外接圓的圓心坐標為(,0).(3)過點M作x軸的垂線交BC′于H,∵B(1,0),C(0,﹣2),∴l(xiāng)BC:y=x﹣2,設(shè)H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴當t=2時,S有最大值1,∴M(2,﹣3).點睛:考查了二次函數(shù)綜合題,該題的難度不算太大,但用到的瑣碎知識點較多,綜合性很強.熟練掌握直角三角形的相關(guān)性質(zhì)以及三角形的面積公式是理出思路的關(guān)鍵.19、B、C兩地的距離大約是6千米.【解析】
過B作BD⊥AC于點D,在直角△ABD中利用三角函數(shù)求得BD的長,然后在直角△BCD中利用三角函數(shù)求得BC的長.【詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【點睛】此題考查了方向角問題.此題難度適中,解此題的關(guān)鍵是將方向角問題轉(zhuǎn)化為解直角三角形的知識,利用三角函數(shù)的知識求解.20、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應(yīng)用待定系數(shù)法求解析式;(1)設(shè)出點T坐標,表示△TAC三邊,進行分類討論;(3)設(shè)出點P坐標,表示Q、R坐標及PQ、QR,根據(jù)以P,Q,R為頂點的三角形與△AMG全等,分類討論對應(yīng)邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設(shè)T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設(shè)P(m,),則Q(m,),∵Q、R關(guān)于x=1對稱∴R(1﹣m,),①當點P在直線l左側(cè)時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側(cè)時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)性質(zhì)、三角形全等和等腰三角形判定,熟練掌握相關(guān)知識,應(yīng)用數(shù)形結(jié)合和分類討論的數(shù)學思想進行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 不過退款協(xié)議合同范本
- 2025年遼寧貨運從業(yè)資格證考試技巧和方法
- 化工師徒合同范本
- 出讓合同范本
- 買木頭合同范本
- 作為甲方合同范本
- 制氫設(shè)備銷售合同范本
- 農(nóng)業(yè)項目施工合同范本
- 冰糖橙水果合同范本
- 上海別墅合同范本
- 《馬克思主義與社會科學方法論》課后思考題答案全
- 急性心肌梗塞
- 八年級地理下期教學計劃(星球地圖版)
- 藍色科技風半導體產(chǎn)業(yè)PPT模板
- 院感手衛(wèi)生培訓課件
- 鑄牢中華民族共同體意識學習PPT
- 多重耐藥鮑曼不動桿菌治療課件
- 物理光學-第二章-光波的疊加與分析-課件
- PID圖(工藝儀表流程圖)基礎(chǔ)知識培訓課件
- 《澳大利亞特有動物》課件
- 第十四屆全國交通運輸行業(yè)職業(yè)技能競賽(公路收費及監(jiān)控員)賽項題庫-下(多選題匯總-共3部分-3)
評論
0/150
提交評論