人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題_第1頁(yè)
人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題_第2頁(yè)
人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題_第3頁(yè)
人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題_第4頁(yè)
人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題

選擇題(共15小題)

1.下列計(jì)算正確的是()

A.2a-1B.a22=2a1C.a2*a3'*D.(a-b)22-b-

2.已知-3=0,則的值是()

A.6B.-6C.1D.8

8

3.如()與(3)的乘積中不含x的一次項(xiàng),則m的值為()

A.-3B.3C.0D.1

4.計(jì)算(a-b)()(a22)(a4-b4)的結(jié)果是()

A.a8+2a4b48B.a8-2a4b18C.a88D.a8-b8

5.多項(xiàng)式-5、252-10各項(xiàng)的公因式是()

A.52B.-53C.D.-5

6.若()39b15,貝ijm、n的值分別為()

A.9;5B.3;5C.5;3D.6;12

7.已知!5,那么x2A-()

XX2

A.10B.23C.25D.27

8.若分式工二的值為0,則x的值為()

X-2

A.±2B.2C.-2D.4

9.已知x2-31=0,則一一的值是()

X2-x+1

A.1B.2C.1D.3

23

10.在式子LI,基,一丁中,分式的個(gè)數(shù)為()

a3a-b兀q-.

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

11.若分式圖一2的值為零,則x的值是()

x-2

A.±2B.2C.-2D.0

12.分式――,-J-,—一的最簡(jiǎn)公分母是()

”-2a+la-1a2+2a+l

A.(a2-1)2B.(a2-1)(a2+l)C.a2+lD.(a-1)4

13.使分式,—有意義的x的取值范圍是()

x-2

A.x>2B.x<2C.xW2D.x22

14.計(jì)算上的結(jié)果是()

a-bb-a

A.a-bB.b-aC.1D.-1

15.化簡(jiǎn)^的結(jié)果是()

X-11-X

A.-1B.1C.1D.1-x

二.解答題(共15小題)

16.已知5,6.求下列各式的值:

(1)a22

(2)(a-b)2.

17.分解因式

(1)4n(m-2)-6(2-m)

(2)X2-22-1.

18.將4個(gè)數(shù)abcd排成兩行,兩列,兩邊各加一條豎直線記

,定可卜

上述記號(hào)叫做2階行列式,若x+11-x=8.求x的值.

1-Xx+1

19.因式分解:

(1)2x2-42;

(2)(a22)2-4a2b2.

20.解方程3」L--2.

X-33-X

21.化簡(jiǎn)下列各式:

(1)(x-1)2(1)2-1;

(2)*-8x+16+(J2_2)+J.

X2+2XX+2X+4

22.解方程:1且_

x-2x-2

23.解分式方程:V—=工

2

4X-12x+l4x-2

2

24.若a2-a-6=0,求分式:—a的值.

aZ-7a+12

25.解分式方程:2J1.

Xx+1

o

26.解方程:3xx+14.

x2+lx

27.計(jì)算:(三-工)4■史

yxx

28.化簡(jiǎn):

2

(Dm-^―;

nri-n

(2)上)

-2

x2x+2x-4

29.計(jì)算:

w."2_2

x+2yx2+4xy+4y2

(2)a2-44-(a2-4)?晨一4a+4.

a2+2a-8a-2

30.計(jì)算:

⑴(-y)-2-23+2004°+l-11

(2)(三-工).衛(wèi)

yxx

人教版八年級(jí)上冊(cè)數(shù)學(xué)基礎(chǔ)訓(xùn)練題

參考答案與試題解析

一.選擇題(共15小題)

1.(2016?江西模擬)下列計(jì)算正確的是()

A.2a-1B.a-^a1C.a2,a31D.(a-b)22-b-

【分析】根據(jù)合并同類項(xiàng),積的乘方,完全平方公式,即可解答.

【解答】解:A.2a-,故錯(cuò)誤;

B.a22=2a2,故錯(cuò)誤;

C.a2*a35,正確;

D.(a-b)22-22,故錯(cuò)誤;

故選:C.

【點(diǎn)評(píng)】本題考查了合并同類項(xiàng),積的乘方,完全平方公式,解

決本題的關(guān)鍵是熟記完全平分公式.

2.(2016春?保定校級(jí)期末)已知-3=0,則2'?2x的值是()

A.6B.-6C.1D.8

8

【分析】根據(jù)同底數(shù)基的乘法求解即可.

【解答】解:3=0,

A3,

2’?2223=8,

故選:I).

【點(diǎn)評(píng)】此題考查了同底數(shù)幕的乘法等知識(shí),解題的關(guān)鍵是把

2y2化為2.

3.(2016春?滄州期末)如()與(3)的乘積中不含x的一次

項(xiàng),則m的值為()

A.-3B.3C.0D.1

【分析】先用多項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則展開求它們的積,并

且把m看作常數(shù)合并關(guān)于x的同類項(xiàng),令x的系數(shù)為0,得出關(guān)

于m的方程,求出m的值.

【解答】解:???()(3)2+332+(3)3m,

又?乘積中不含x的一次項(xiàng),

.*.30,

解得-3.

故選:A.

【點(diǎn)評(píng)】本題主要考查了多項(xiàng)式乘多項(xiàng)式的運(yùn)算,根據(jù)乘積中不

含哪一項(xiàng),則哪一項(xiàng)的系數(shù)等于0列式是解題的關(guān)鍵.

4.(2016春?高青縣期中)計(jì)算(a-b)()(a22)(a4-b4)的結(jié)

果是()

A.a8+2a4b48B.a8-2a1b48C.a88D.a8-b8

【分析】這幾個(gè)式子中,先把前兩個(gè)式子相乘,這兩個(gè)二項(xiàng)式中

有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù).相乘時(shí)符合平方差公式得

到a?-b2,再把這個(gè)式子與a??相乘又符合平方差公式,得到,

-b1,與最后一個(gè)因式相乘,可以用完全平方公式計(jì)算.

【解答】解:(a-b)()(a22)(a4-b4),

=(a2-b2)(a22)(a4-b4),

=(a4-b1)2,

8-2aV.

故選B.

【點(diǎn)評(píng)】本題主要考查了平方差公式的運(yùn)用,本題難點(diǎn)在于連續(xù)

運(yùn)用平方差公式后再利用完全平方公式求解.

5.(2016春?深圳校級(jí)期中)多項(xiàng)式-5^+252-10各項(xiàng)的公因式

是()

A.52B.-53C.D.-5

【分析】根據(jù)公因式是多項(xiàng)式中每項(xiàng)都有的因式,可得答案.

【解答】解:-54252-10各項(xiàng)的公因式是-5,

故選:D.

【點(diǎn)評(píng)】本題考查了公因式,公因式的系數(shù)是各項(xiàng)系數(shù)的最大公

約數(shù),字母是相同的字母,指數(shù)是相同字母的指數(shù)最底的指數(shù).

6.(2016春?灌云縣校級(jí)月考)若()39b15,則m、n的值分別為

()

A.9;5B.3;5C.5;3D.6;12

【分析】根據(jù)積的乘方法則展開得出a33汨5,推出39,315,求

出m、n即可.

【解答】解:???()39b15,

?339i15

??ab,

.*.39,315,

.\3,5,

故選B.

【點(diǎn)評(píng)】本題考查了積的乘方的運(yùn)用,關(guān)鍵是檢查學(xué)生能否正確

運(yùn)用法則進(jìn)行計(jì)算,題目比較好,但是一道比較容易出錯(cuò)的題目.

7.(2016春?滕州市校級(jí)月考)已知15,那么x2_l_()

2

XX

A.10B.23C.25D.27

【分析】根據(jù)完全平方公式,即可解答.

【解答】解:15,

X

/IJ\2r-2

(x4—)二5'

x

21

x+2胃二25,

x

21

xy=23?

x

故選:B.

【點(diǎn)評(píng)】本題考查了完全平分公式,解決本題的關(guān)鍵是熟記完全

平分公式.

o

8.(2016?都勻市一模)若分式匚1的值為0,則x的值為()

x-2

A.±2B.2C.-2D.4

【分析】分式的值為零即:分子為3分母不為0.

【解答】解:根據(jù)題意,得:

x2-4=0且x-2#0,

解得:-2;

故選:C.

【點(diǎn)評(píng)】本題考查了分式的值為零的條件.若分式的值為零,需

同時(shí)具備兩個(gè)條件:(1)分子為0;(2)分母不為0.這兩個(gè)條

件缺一不可.

9.(2016?蘇州一模)已知X?-31=0,則一的值是()

X2-x+1

A.1B.2C.1D.3

23

【分析】先根據(jù)x2-31=0得出X2=3X-1,再代入分式進(jìn)行計(jì)算

即可.

【解答】解:二"?-?1:。,

X2=3X-1,

故選A.

【點(diǎn)評(píng)】本題考查的是分式的化簡(jiǎn)求值,熟知分式混合運(yùn)算的法

則是解答此題的關(guān)鍵.

10.(2016春?淅川縣期末)在式子工一^,結(jié),—

a3a-b兀2一2

XJ

分式的個(gè)數(shù)為()

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【分析】判斷分式的依據(jù)是看分母中是否含有字母,如果含有字

母則是分式,如果不含有字母則不是分式.

【解答】解:-丁這個(gè)式子分母中含有字母,因

LJ-23

aabx-

此是分式.

其它式子分母中均不含有字母,是整式,而不是分式.

故選:B.

【點(diǎn)評(píng)】本題主要考查分式的概念,分式與整式的區(qū)別主要在于:

分母中是否含有未知數(shù).

11.(2016春?滕州市期末)若分式包二2的值為零,則x的值是

x-2

()

A.±2B.2C.-2I).0

【分析】分式的值為0,則分母不為0,分子為0.

【解答】解:???-2=0,

,±2,

當(dāng)2時(shí),x-2=0,分式無意義.

當(dāng)-2時(shí),x-2W0,

???當(dāng)-2時(shí)分式的值是0.

故選C.

【點(diǎn)評(píng)】分式是0的條件中特別需要注意的是分母不能是0,這

是經(jīng)常考查的知識(shí)點(diǎn).

12.(2016春?固鎮(zhèn)縣期末)分式一—,二—,—一的最簡(jiǎn)

-2a+la-1a2+2a+l

公分母是()

A.(a2-1)2B.(a2-1)(a2+l)C.a2+lD.(a-1)4

【分析】利用最簡(jiǎn)公分母就是各系數(shù)的最小公倍數(shù),相同字母或

整式的最高次幕,所有不同字母或整式都寫在積里求解即可.

【解答】解:白,

2222

a-2a+l(a-l)a+2a+l(a+1)

所以分式"一,_J_,—一的最簡(jiǎn)公分母是(a-1)2(1)

2

-2a+la-1a+2a+l

2.即(a2-1)2

故選:A.

【點(diǎn)評(píng)】本題主要考查了最簡(jiǎn)公分母,解題的關(guān)鍵是熟記最簡(jiǎn)公

分母的定義.

13.(2015?南京二模)使分式,—有意義的x的取值范圍是()

x-2

A.x>2B.x<2C.xW2D.x22

【分析】根據(jù)分式有意義的條件:分母不等于。即可求解.

【解答】解:根據(jù)題意得:x-2N0,解得:xW2.

故選:C.

【點(diǎn)評(píng)】本題主要考查了分式有意義的條件,解決本題的關(guān)鍵是

熟記分式有意義的條件:分母不等于0.

14.(2015?濱州模擬)計(jì)算上匕底的結(jié)果是()

a-bb-a

A.a-bB.b-aC.1I).-1

【分析】幾個(gè)分式相加減,根據(jù)分式加減法則進(jìn)行運(yùn)算,如果分

母互為相反數(shù)則應(yīng)將分母轉(zhuǎn)化為其相反數(shù)后再進(jìn)行運(yùn)算.

[解答]解:-^_4=一1,故選D.

bb-ab-(a-b)b

【點(diǎn)評(píng)】進(jìn)行分式的加減時(shí)應(yīng)注意符號(hào)的轉(zhuǎn)化.

15.(2015?深圳二模)化簡(jiǎn)1+x的結(jié)果是()

X-11-X

A.-1B.1C.1D.1-x

【分析】把分式的分母轉(zhuǎn)化為同分母,按照同分母分式加減,分

母不變,分子加減,即可解答.

【解答】解:」xl-x-G-1)…

X"11XX"1X"1X-1X-1

故選:A.

【點(diǎn)評(píng)】本題考查了分式的加減法,解決本題的關(guān)鍵是同分母分

式加減,分母不變,分子加減,注意最后要約分.

二.解答題(共15小題)

16.(2016春?灌云縣期中)已知5,6.求下列各式的值:

(1)a22

(2)(a-b)2.

【分析】(1)根據(jù)a??:()2-2,即可解答.

(2)根據(jù)根-b)2=()2-4,即可解答.

22222222

【解答】解:(1){a=()-25-2X6a=()-25-2X6=25

-12=13.

(2)(a-b)2=()2-452-4X6=25-24=1.

【點(diǎn)評(píng)】本題考查了完全平分公式,解決本題的關(guān)鍵是熟記完全

平分公式.

17.(2015春?寧波期中)分解因式

(1)4n(m-2)-6(2-m)

(2)x2-22-1.

【分析】(1)利用提公因式法進(jìn)行分解因式,即可解答;

(2)利用完全平方公式,平方差公式進(jìn)行因式分解,即可解答.

【解答】解:(1)4n(m-2)-6(2-m)

=4n(m-2)+6(m-2)

二(46)(m-2)

=2(m-2)(23).

(2)x2-22-1

=(x-y)2-1

二(x-1)(x-y-1).

【點(diǎn)評(píng)】本題考查了因式分解,解決本題的關(guān)鍵是利用提公因式

法,公式法進(jìn)行因式分解.

18.(2015春?涇陽(yáng)縣校級(jí)月考)將4個(gè)數(shù)abcd排成兩行,

兩列,兩邊各加一條豎直線記成})定義

上述記號(hào)叫做2階行列式,若x+11-x=8.求x的值.

1-Xx+1

【分析】根據(jù)題中的新定義將所求的方程化為普通方程,整理后

即可求出方程的解,即為X的值.

【解答】解:根據(jù)題意化簡(jiǎn)x+1l-x=8,

1-Xx+1

得:⑴2-(1-X)2=8,

整理得:X2+21-(1-22)-8=0,即48,

解得:2.

【點(diǎn)評(píng)】此題考查了整式的混合運(yùn)算,屬于新定義的題型,涉及

的知識(shí)有:完全平方公式,去括號(hào)、合并同類項(xiàng)法則,根據(jù)題意

將所求的方程化為普通方程是解本題的關(guān)鍵.

19.(2014春?蘇州期末)因式分解:

(1)2x2-42;

(2)(a22)2-4a2b2.

【分析】(1)首先提取公因式2,再利用完全平方公式進(jìn)行二次

分解即可;

(2)首先利用平方差公式進(jìn)行分解,再利用完全平方公式進(jìn)行

分解.

【解答】解:(1)原式二2(X2-21)=2(x-1)2,

(2)原式=(a22+2)(a22-2)=()2(a-b)2.

【點(diǎn)評(píng)】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)

多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分

解,同時(shí)因式分解要徹底,直到不能分解為止.

20.(2016?江干區(qū)一模)解方程3」―-2.

X-33-X

【分析】觀察可得最簡(jiǎn)公分母是(x-3),方程兩邊乘最簡(jiǎn)公分

母,可以把分式方程轉(zhuǎn)化為整式方程求解.

【解答】解:方程的兩邊同乘(x-3),得:2--1-2(x-3),

解得:3,

檢驗(yàn):把3代入(x-3)=0,即3不是原分式方程的解.

則原方程無解.

【點(diǎn)評(píng)】此題考查了分式方程的求解方法.此題難度不大,注意

掌握轉(zhuǎn)化思想的應(yīng)用,注意解分式方程一定要驗(yàn)根.

21.(2016春?開縣校級(jí)月考)化簡(jiǎn)下列各式:

(1)(x-1)2(1)2-1;

2

(2)xYX+16+(J2_2)+J.

X2+2XX+2X+4

【分析】(1)根據(jù)平方差公式進(jìn)行計(jì)算即可;

(2)先對(duì)式子能分解因式的先分解因式,對(duì)括號(hào)內(nèi)的先通分再

相加,然后化簡(jiǎn)即可.

【解答】解:(l)(x-l)-(l)--l

=[(X-1)(1)]"-1

=(X2-1)2-1

4-2X2+1-1

1-2x2;

o

(2)--8-+16+(J2_2)+J

X2+2XX+2X+4

_(x-4)212-(x-2)(x+2)1

x(x+2)'x+2+x+4

_(X-4)2、,X+2,1

2

x(x+2)12-X+4X+4

=&-4產(chǎn)x+21

x(x+2)(4+x)(4-x)x+4

=-x-41

x(x+4)x+4

-4~x+x

x(x+4)

_4

x(x+4)

=4

X2+4X

【點(diǎn)評(píng)】本題考查分式的混合運(yùn)算、整式的混合運(yùn)算、平方差公

式、完全平方差公式、因式分解,考查的是對(duì)問題觀察與巧妙利

用公式的能力,主要是采用因式分解的數(shù)學(xué)思想對(duì)所化簡(jiǎn)的式子

進(jìn)行分解因式后再化簡(jiǎn).

22.(2015?龍巖)解方程:1-^~

x-2x-2

【分析】根據(jù)解分式方程的步驟進(jìn)行解答,注意進(jìn)行檢驗(yàn).

【解答】解:方程兩邊同乘以(x-2)得,

(x-2)+36,

解得;2,

檢驗(yàn):當(dāng)2時(shí),x-2=0,

???2不是原分式方程的解,

???原分式方程無解.

【點(diǎn)評(píng)】本題考查了解分式方程,解決本題的關(guān)鍵是熟記解分式

方程的步驟,一定要進(jìn)行檢驗(yàn).

23.(2015?賀州)解分式方程:x+1=工-一..

4x2-12x+l4x-2

【分析】方程兩邊同時(shí)乘以(21)(2x-1),即可化成整式方程,

解方程求得x的值,然后進(jìn)行檢驗(yàn),確定方程的解.

【解答】解:原方程即7一空一『q_-二—,

(2x+l)(2x-l)2x+l2x-1

兩邊同時(shí)乘以(21)(2x-1)得:1=3(2x-1)-2(21),

l=6x-3-4x-2,

解得:6.

經(jīng)檢驗(yàn):6是原分式方程的解.

原方程的解是6.

【點(diǎn)評(píng)】本題考查的是解分式方程,

(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化

為整式方程求解.

(2)解分式方程一定注意要驗(yàn)根.

24.(2015?寶應(yīng)縣一模)若a2-a-6=0,求分式一_二2^_的值.

a2-7a+12

【分析】先根據(jù)題意得出a?6,再根據(jù)分式混合運(yùn)算的法則把原

式進(jìn)行化簡(jiǎn),把a(bǔ)2的值代入進(jìn)行計(jì)算即可,

【解答】解:Ta?-a-6=0,

/.a26.

原式a+6-3a-2a+61

a+6-7a+12-6a+183

【點(diǎn)評(píng)】本題考查的是分式的化簡(jiǎn)求值,熟知分式混合運(yùn)算的法

則是解答此題的關(guān)鍵.

25.(2015?南平模擬)解分式方程:

Xx+1

【分析】觀察可得最簡(jiǎn)公分母是x(l),方程兩邊乘最簡(jiǎn)公分母,

可以把分式方程轉(zhuǎn)化為整式方程求解.

【解答】解:去分母,得2(1)(1).

去括號(hào),得22?,

整理,得x?=2,

解這個(gè)方程,得土加.

檢驗(yàn):當(dāng)土加時(shí),x(1)W0,所以士證是原方程的解.

故原方程的解是士血.

【點(diǎn)評(píng)】本題考查了解分式方程,(1)解分式方程的基本思想是

“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.

(2)解分式方程一定注意要驗(yàn)根.

(3)去分母時(shí)要注意符號(hào)的變化

2

26.(2014?崇明縣二模)解方程:X-H4.

x2+lx

【分析】可根據(jù)方程特點(diǎn)設(shè)二一,則原方程可化為y2-43=0.解

X-1

一元二次方程求y,再求X.

【解答】解:設(shè)之L,

X

得:14,

y

y2-43=0,

解得y1=l,y2=3.

當(dāng)y口時(shí),Z±L=1,x2-l=0,此方程沒有數(shù)解.

當(dāng)y?=3時(shí),zi+L=3,X*2-31=0,解得出L

x2

經(jīng)檢驗(yàn)法叵都是原方程的根,

2

所以原方程的根是以L

2

【點(diǎn)評(píng)】本題考查用換元法解分式方程的能力.用換元法解一些

復(fù)雜的分式方程是比較簡(jiǎn)單的一種方法,根據(jù)方程特點(diǎn)設(shè)出相應(yīng)

未知數(shù),解方程能夠使問題簡(jiǎn)單化,注意求出方程解后要驗(yàn)根.

27.(2013秋?昌平區(qū)期末)計(jì)算:(三-工)小也.

yxx

【分析】首先對(duì)括號(hào)內(nèi)的分式進(jìn)行通分相減,把除法轉(zhuǎn)化為乘法,

然后進(jìn)行約分即可.

22

【解答】解:原式=匚,?上

xyx+y

二(x+y)(x-y).x

xyx+y

=x-y

y

【點(diǎn)評(píng)】本題主要考查分式的混合運(yùn)算,通分、因式分解和約分

是解答的關(guān)鍵.

28.(2014春?維揚(yáng)區(qū)校級(jí)期中)化簡(jiǎn):

2

(Dm--^―;

nH-n

(2)(互-上)

-2

x2x+2x-4

【分析】(1)原式兩項(xiàng)通分并利用同分母分式的加法法則計(jì)算即

可得到結(jié)果;

(2)原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,

同時(shí)除法法則變形,約分即可得到結(jié)果.

[解答]解:(1)原式(/n)(m-n)2n2K-八+2/K+n:;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論