巴中市重點中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
巴中市重點中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
巴中市重點中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
巴中市重點中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
巴中市重點中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

巴中市重點中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°2.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°3.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x24.把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為()A.15 B.17 C.19 D.245.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.6.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的A. B. C. D.7.下列所給的汽車標(biāo)志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.8.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a(chǎn)10÷a5=a5 D.(xy2)3=xy69.已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程的兩實數(shù)根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=310.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標(biāo)系xOy中,點A(4,3)為⊙O上一點,B為⊙O內(nèi)一點,請寫出一個符合條件要求的點B的坐標(biāo)______.12.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.13.關(guān)于x的一元二次方程x2+4x﹣k=0有實數(shù)根,則k的取值范圍是__________.14.如圖,要使△ABC∽△ACD,需補充的條件是_____.(只要寫出一種)15.如圖,已知,D、E分別是邊AB、AC上的點,且設(shè),,那么______用向量、表示16.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,D是BC上的一點,若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.18.(8分)我們知道中,如果,,那么當(dāng)時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?19.(8分)某中學(xué)開展“漢字聽寫大賽”活動,為了解學(xué)生的參與情況,在該校隨機抽取了四個班級學(xué)生進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:(1)這四個班參與大賽的學(xué)生共__________人;(2)請你補全兩幅統(tǒng)計圖;(3)求圖1中甲班所對應(yīng)的扇形圓心角的度數(shù);(4)若四個班級的學(xué)生總數(shù)是160人,全校共2000人,請你估計全校的學(xué)生中參與這次活動的大約有多少人.20.(8分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:求參與問卷調(diào)查的總?cè)藬?shù).補全條形統(tǒng)計圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).21.(8分)一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.(1)求口袋中黃球的個數(shù);(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;22.(10分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.23.(12分)已知關(guān)于x的一元二次方程kx2﹣6x+1=0有兩個不相等的實數(shù)根.(1)求實數(shù)k的取值范圍;(2)寫出滿足條件的k的最大整數(shù)值,并求此時方程的根.24.如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△A′BO與菱形ABCD重合部分的面積.(2)如圖3,將△A′BO繞點O逆時針旋轉(zhuǎn)交AB于點E′,交BC于點F,①求證:BE′+BF=2,②求出四邊形OE′BF的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.2、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算3、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y(tǒng)=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y(tǒng)=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y(tǒng)=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項正確.故選D.4、D【解析】

由圖可知:第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,第④個圖案有三角形1+3+4+4=12,…第n個圖案有三角形4(n﹣1)個(n>1時),由此得出規(guī)律解決問題.【詳解】解:解:∵第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,…∴第n個圖案有三角形4(n﹣1)個(n>1時),則第⑦個圖中三角形的個數(shù)是4×(7﹣1)=24個,故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)給定圖形中三角形的個數(shù),找出an=4(n﹣1)是解題的關(guān)鍵.5、A【解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.6、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.7、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.8、C【解析】

根據(jù)乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點睛】本題考查乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關(guān)鍵是掌握乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運算.9、B【解析】試題分析:∵二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),∴.∴.故選B.10、A【解析】試題解析:由于點A、B在反比例函數(shù)圖象上關(guān)于原點對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義.二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,2).【解析】

連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點與圓的位置關(guān)系可得一個符合要求的點B的坐標(biāo).【詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點,∴符合要求的點B的坐標(biāo)(2,2)答案不唯一.故答案為:(2,2).【點睛】考查了點與圓的位置關(guān)系,坐標(biāo)與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.12、①②③④⑤⑥⑦.【解析】

將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.13、k≥﹣1【解析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出結(jié)論.詳解:∵關(guān)于x的一元二次方程x2+1x-k=0有實數(shù)根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當(dāng)△≥0時,方程有實數(shù)根”是解題的關(guān)鍵.14、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】試題分析:∵∠DAC=∠CAB∴當(dāng)∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB時,△ABC∽△ACD.故答案為∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.考點:1.相似三角形的判定;2.開放型.15、【解析】

在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結(jié)果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì)以及向量的運算.16、1.【解析】

試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).三、解答題(共8題,共72分)17、3【解析】試題分析:根據(jù)AB=30,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案.試題解析:∵BD3+AD3=63+83=303=AB3,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD=,∴S△ABC=BC?AD=(BD+CD)?AD=×33×8=3,因此△ABC的面積為3.答:△ABC的面積是3.考點:3.勾股定理的逆定理;3.勾股定理.18、(1)當(dāng),時有最大值1;(2)當(dāng)時,面積有最大值32.【解析】

(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設(shè)BD=x,由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當(dāng),時有最大值1;(2)當(dāng),時有最大值,設(shè),由題意:當(dāng)AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當(dāng)時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建二次函數(shù)解決問題.19、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據(jù)乙班參賽30人,所占比為20%,即可求出這四個班總?cè)藬?shù);(2)根據(jù)丁班參賽35人,總?cè)藬?shù)是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總?cè)藬?shù),即可得出丙班參賽得人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據(jù)樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學(xué)生數(shù)是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數(shù)是:100×15%=15(人);如圖:(3)甲班級所對應(yīng)的扇形圓心角的度數(shù)是:30%×360°=108°;(4)根據(jù)題意得:2000×=1250(人).答:全校的學(xué)生中參與這次活動的大約有1250人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;樣本估計總體.20、(1)參與問卷調(diào)查的總?cè)藬?shù)為500人;(2)補全條形統(tǒng)計圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】

(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;

(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計圖補充完整即可得出結(jié)論;

(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【詳解】(1)(人.答:參與問卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補全條形統(tǒng)計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,解題的關(guān)鍵是:(1)觀察統(tǒng)計圖找出數(shù)據(jù),再列式計算;(2)通過計算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總?cè)藬?shù),估算出喜歡微信支付方式的人數(shù).21、(1)1;(2)【解析】

(1)設(shè)口袋中黃球的個數(shù)為x個,根據(jù)從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設(shè)口袋中黃球的個數(shù)為個,根據(jù)題意得:解得:=1經(jīng)檢驗:=1是原分式方程的解∴口袋中黃球的個數(shù)為1個(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.22、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】

(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,α=150°;②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【詳解】(1)如圖1,延長ED交AG于點H,∵點O是正方形ABCD兩對角線的交點,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論