版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省揚(yáng)州市2024年中考二模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列選項(xiàng)中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a(chǎn)=﹣2,b=1 B.a(chǎn)=3,b=﹣2 C.a(chǎn)=0,b=1 D.a(chǎn)=2,b=12.某校舉行“漢字聽寫比賽”,5個(gè)班級(jí)代表隊(duì)的正確答題數(shù)如圖.這5個(gè)正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,153.如圖,平面直角坐標(biāo)系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點(diǎn)C(3,2),連接OC.以O(shè)C為對(duì)稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點(diǎn)A′、B,則k的值是()A.9 B. C. D.34.計(jì)算±的值為()A.±3 B.±9 C.3 D.95.某中學(xué)籃球隊(duì)12名隊(duì)員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊(duì)員的年齡,下列說法錯(cuò)誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲6.某商店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣了80元,其中一個(gè)贏利60%,另一個(gè)虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺7.函數(shù)的自變量x的取值范圍是()A. B. C. D.8.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.9.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°10.下列計(jì)算正確的有()個(gè)①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過y軸上點(diǎn)C反射后經(jīng)過點(diǎn)B(1,0),則光線從點(diǎn)A到點(diǎn)B經(jīng)過的路徑長(zhǎng)為_____.12.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長(zhǎng)為________.13.如圖,已知點(diǎn)A(a,b),0是原點(diǎn),OA=OA1,OA⊥OA1,則點(diǎn)A1的坐標(biāo)是.14.一元二次方程x(x﹣2)=x﹣2的根是_____.15.如圖,在△ABC中,∠C=90°,D是AC上一點(diǎn),DE⊥AB于點(diǎn)E,若AC=8,BC=6,DE=3,則AD的長(zhǎng)為________.16.閱讀理解:引入新數(shù),新數(shù)滿足分配律,結(jié)合律,交換律.已知,那么________.三、解答題(共8題,共72分)17.(8分)為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)18.(8分)如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長(zhǎng).19.(8分)如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.20.(8分)圖1是一商場(chǎng)的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)21.(8分)規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請(qǐng)說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.22.(10分)(1)計(jì)算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡(jiǎn),再求值:()+,其中a=﹣2+.23.(12分)(5分)計(jì)算:(124.城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)要證明一個(gè)結(jié)論不成立,可以通過舉反例的方法來證明一個(gè)命題是假命題.由此即可解答.【詳解】∵當(dāng)a=﹣2,b=1時(shí),(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點(diǎn)睛】本題考查了命題與定理,要說明數(shù)學(xué)命題的錯(cuò)誤,只需舉出一個(gè)反例即可,這是數(shù)學(xué)中常用的一種方法.2、D【解析】
將五個(gè)答題數(shù),從小打到排列,5個(gè)數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個(gè)答題數(shù)排序?yàn)椋?0,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點(diǎn)睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.3、C【解析】
設(shè)B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點(diǎn)C作CD⊥x軸于D,過點(diǎn)A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設(shè)B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點(diǎn)睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點(diǎn)的坐標(biāo)特征、相似三角形、翻折等,解題關(guān)鍵是通過設(shè)點(diǎn)B的坐標(biāo),表示出點(diǎn)A′的坐標(biāo).4、B【解析】
∵(±9)2=81,∴±±9.故選B.5、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項(xiàng)A正確,不合題意;極差是:16﹣13=3,故選項(xiàng)B正確,不合題意;中位數(shù)是:14.5,故選項(xiàng)C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項(xiàng)D錯(cuò)誤,符合題意.故選D.“點(diǎn)睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.6、A【解析】試題分析:第一個(gè)的進(jìn)價(jià)為:80÷(1+60%)=50元,第二個(gè)的進(jìn)價(jià)為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點(diǎn):一元一次方程的應(yīng)用7、D【解析】
根據(jù)二次根式的意義,被開方數(shù)是非負(fù)數(shù).【詳解】根據(jù)題意得,解得.故選D.【點(diǎn)睛】本題考查了函數(shù)自變量的取值范圍的確定和分式的意義.函數(shù)自變量的范圍一般從三個(gè)方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù)數(shù).8、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項(xiàng)正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;故選C.9、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運(yùn)用,解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ).解決問題的關(guān)鍵是作平行線.10、C【解析】
根據(jù)積的乘方法則,多項(xiàng)式乘多項(xiàng)式的計(jì)算法則,完全平方公式,合并同類項(xiàng)的計(jì)算法則,乘方的定義計(jì)算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯(cuò)誤;②(x﹣2)(x+3)=x2+x﹣6,錯(cuò)誤;③(x﹣2)2=x2﹣4x+4,錯(cuò)誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計(jì)算正確的有2個(gè).故選C.【點(diǎn)睛】考查了積的乘方,多項(xiàng)式乘多項(xiàng)式,完全平方公式,合并同類項(xiàng),乘方,關(guān)鍵是熟練掌握計(jì)算法則正確進(jìn)行計(jì)算.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解析】
延長(zhǎng)AC交x軸于B′.根據(jù)光的反射原理,點(diǎn)B、B′關(guān)于y軸對(duì)稱,CB=CB′.路徑長(zhǎng)就是AB′的長(zhǎng)度.結(jié)合A點(diǎn)坐標(biāo),運(yùn)用勾股定理求解.【詳解】解:如圖所示,延長(zhǎng)AC交x軸于B′.則點(diǎn)B、B′關(guān)于y軸對(duì)稱,CB=CB′.作AD⊥x軸于D點(diǎn).則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點(diǎn)A到點(diǎn)B經(jīng)過的路徑長(zhǎng)為2.考點(diǎn):解直角三角形的應(yīng)用點(diǎn)評(píng):本題考查了直角三角形的有關(guān)知識(shí),同時(shí)滲透光學(xué)中反射原理,構(gòu)造直角三角形是解決本題關(guān)鍵12、【解析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.13、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設(shè)A1的坐標(biāo)為(x,y),設(shè)∠AOX=α,∠A1OD=β,A1坐標(biāo)(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標(biāo)為(﹣b,a).【點(diǎn)評(píng)】重點(diǎn)理解三角函數(shù)的定義和求解方法,主要應(yīng)用公式sinα=cosβ,cosα=sinβ.14、1或1【解析】
移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可得答案.【詳解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案為:1或1.【點(diǎn)睛】本題考查了解一元二次方程的應(yīng)用,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.15、1【解析】
如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質(zhì)就可以求出結(jié)論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點(diǎn)睛】本題考查了勾股定理的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)求出△AED∽△ACB是解答本題的關(guān)鍵.16、2【解析】
根據(jù)定義即可求出答案.【詳解】由題意可知:原式=1-i2=1-(-1)=2故答案為2【點(diǎn)睛】本題考查新定義型運(yùn)算,解題的關(guān)鍵是正確理解新定義.三、解答題(共8題,共72分)17、涼亭P到公路l的距離為273.2m.【解析】
分析:作PD⊥AB于D,構(gòu)造出Rt△APD與Rt△BPD,根據(jù)AB的長(zhǎng)度.利用特殊角的三角函數(shù)值求解.【詳解】詳解:作PD⊥AB于D.設(shè)BD=x,則AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°?AD,即DB=PD=tan30°?AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:涼亭P到公路l的距離為273.2m.【點(diǎn)睛】此題考查的是直角三角形的性質(zhì),解答此題的關(guān)鍵是構(gòu)造出兩個(gè)特殊角度的直角三角形,再利用特殊角的三角函數(shù)值解答.18、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長(zhǎng),在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點(diǎn),又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點(diǎn):2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.19、2.7米.【解析】
先根據(jù)勾股定理求出AB的長(zhǎng),同理可得出BD的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.20、1.4米.【解析】
過點(diǎn)B作BE⊥AD于點(diǎn)E,過點(diǎn)C作CF⊥AD于點(diǎn)F,延長(zhǎng)FC到點(diǎn)M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長(zhǎng)度,進(jìn)而可得出EF的長(zhǎng)度,再在Rt△MEF中利用勾股定理即可求出EM的長(zhǎng),此題得解.【詳解】過點(diǎn)B作BE⊥AD于點(diǎn)E,過點(diǎn)C作CF⊥AD于點(diǎn)F,延長(zhǎng)FC到點(diǎn)M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用、勾股定理以及平行四邊形的判定與性質(zhì),正確添加輔助線,構(gòu)造直角三角形,利用勾股定理求出BC的長(zhǎng)度是解題的關(guān)鍵.21、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】
(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對(duì)他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點(diǎn)到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時(shí),PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點(diǎn)向x軸作垂線與直線相交,拋物線頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線y=x2﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物課題研究的學(xué)生參與計(jì)劃
- 經(jīng)理的時(shí)間管理技巧分享計(jì)劃
- 酒店管理的企業(yè)文化
- 敬業(yè)行業(yè)話務(wù)員崗位展望
- 2025年中考物理一輪復(fù)習(xí)之聲現(xiàn)象
- 酒店管理的利益最大化
- 物流行業(yè)倉儲(chǔ)配送培訓(xùn)總結(jié)
- 汽車美容銷售顧問銷售總結(jié)報(bào)告
- 2024年設(shè)備監(jiān)理師考試題庫附答案(輕巧奪冠)
- 2024年稅務(wù)師題庫及答案【易錯(cuò)題】
- 廣東省中山市2022-2023學(xué)年高一上學(xué)期期末考試物理試題
- 是誰殺死了周日
- 有關(guān)基建的工作總結(jié)
- 無人機(jī)技術(shù)在電信領(lǐng)域的應(yīng)用
- 2023-2024學(xué)年四川省南充市七年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 氮化硅的制備性質(zhì)及應(yīng)用課件
- 物業(yè)多種經(jīng)營(yíng)問題分析報(bào)告
- 浙江省寧波市鎮(zhèn)海區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 員工健康狀況篩查方案
- 執(zhí)行 如何完成任務(wù)的學(xué)問
- 6.2《青紗帳-甘蔗林》【中職專用】(高教版2023基礎(chǔ)模塊下冊(cè))
評(píng)論
0/150
提交評(píng)論