




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省臺(tái)州市臺(tái)州中學(xué)2024年高考臨考沖刺數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,點(diǎn)為中點(diǎn),過點(diǎn)的直線與,所在直線分別交于點(diǎn),,若,,則的最小值為()A. B.2 C.3 D.2.函數(shù)的部分圖像大致為()A. B.C. D.3.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.4.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,5.如圖,正方體中,,,,分別為棱、、、的中點(diǎn),則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線6.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長(zhǎng)軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.7.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.148.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,9.已知實(shí)數(shù)滿足約束條件,則的最小值是A. B. C.1 D.410.如圖是國(guó)家統(tǒng)計(jì)局公布的年入境游客(單位:萬(wàn)人次)的變化情況,則下列結(jié)論錯(cuò)誤的是()A.2014年我國(guó)入境游客萬(wàn)人次最少B.后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì)C.這6年我國(guó)入境游客萬(wàn)人次的中位數(shù)大于13340萬(wàn)人次D.前3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差小于后3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差11.“”是“函數(shù)的圖象關(guān)于直線對(duì)稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在平行四邊形中,若則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過動(dòng)點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.14.已知集合,,則__________.15.已知向量,,若滿足,且方向相同,則__________.16.已知,,且,則最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點(diǎn).(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值18.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.19.(12分)己知函數(shù).(1)當(dāng)時(shí),求證:;(2)若函數(shù),求證:函數(shù)存在極小值.20.(12分)聯(lián)合國(guó)糧農(nóng)組織對(duì)某地區(qū)最近10年的糧食需求量部分統(tǒng)計(jì)數(shù)據(jù)如下表:年份20102012201420162018需求量(萬(wàn)噸)236246257276286(1)由所給數(shù)據(jù)可知,年需求量與年份之間具有線性相關(guān)關(guān)系,我們以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo),請(qǐng)完成如下數(shù)據(jù)處理表格:年份—20140需求量—2570(2)根據(jù)回歸直線方程分析,2020年聯(lián)合國(guó)糧農(nóng)組織計(jì)劃向該地區(qū)投放糧食300萬(wàn)噸,問是否能夠滿足該地區(qū)的糧食需求?參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.21.(12分)已知直線過橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.22.(10分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時(shí),游戲停止,記得分的概率和為.①求;②當(dāng)時(shí),記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由,,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)椋?,所以.因?yàn)椋?,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1.故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、A【解析】
根據(jù)函數(shù)解析式,可知的定義域?yàn)椋ㄟ^定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項(xiàng),觀察選項(xiàng)的圖象,可知代入,解得,排除選項(xiàng),即可得出答案.【詳解】解:因?yàn)?,所以的定義域?yàn)?,則,∴為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除選項(xiàng),且當(dāng)時(shí),,排除選項(xiàng),所以正確.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式識(shí)別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進(jìn)行排除.3、A【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐?,所以在點(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.4、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.5、C【解析】
充分利用正方體的幾何特征,利用線面平行的判定定理,根據(jù)判斷A的正誤.根據(jù),判斷B的正誤.根據(jù)與相交,判斷C的正誤.根據(jù),判斷D的正誤.【詳解】在正方體中,因?yàn)?,所以平面,故A正確.因?yàn)?,所以,所以平面故B正確.因?yàn)?,所以平面,故D正確.因?yàn)榕c相交,所以與平面相交,故C錯(cuò)誤.故選:C【點(diǎn)睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.6、D【解析】
求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿足=2,則=2,化簡(jiǎn)得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.7、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.8、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對(duì)目標(biāo)函數(shù)幾何意義的認(rèn)識(shí),屬于基礎(chǔ)題.9、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過點(diǎn)時(shí),z取得最小值,由,解得,所以,所以,故選B.10、D【解析】
ABD可通過統(tǒng)計(jì)圖直接分析得出結(jié)論,C可通過計(jì)算中位數(shù)判斷選項(xiàng)是否正確.【詳解】A.由統(tǒng)計(jì)圖可知:2014年入境游客萬(wàn)人次最少,故正確;B.由統(tǒng)計(jì)圖可知:后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì),故正確;C.入境游客萬(wàn)人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬(wàn)次,故正確;D.由統(tǒng)計(jì)圖可知:前年的入境游客萬(wàn)人次相比于后年的波動(dòng)更大,所以對(duì)應(yīng)的方差更大,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表信息的讀取以及對(duì)中位數(shù)和方差的理解,難度較易.處理問題的關(guān)鍵是能通過所給統(tǒng)計(jì)圖,分析出對(duì)應(yīng)的信息,對(duì)學(xué)生分析問題的能力有一定要求.11、A【解析】
先求解函數(shù)的圖象關(guān)于直線對(duì)稱的等價(jià)條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對(duì)稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對(duì)稱”的充分不必要條件.故選:A【點(diǎn)睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.12、C【解析】
由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因?yàn)?
所以
,
,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.14、【解析】
直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,是基礎(chǔ)題.15、【解析】
由向量平行坐標(biāo)表示計(jì)算.注意驗(yàn)證兩向量方向是否相同.【詳解】∵,∴,解得或,時(shí),滿足題意,時(shí),,方向相反,不合題意,舍去.∴.故答案為:1.【點(diǎn)睛】本題考查向量平行的坐標(biāo)運(yùn)算,解題時(shí)要注意驗(yàn)證方向相同這個(gè)條件,否則會(huì)出錯(cuò).16、【解析】
首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【詳解】,結(jié)合可知原式,且,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.即最小值為.【點(diǎn)睛】在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線的直角坐標(biāo)方程為,直線的普通方程為;(2)【解析】
(1)由極坐標(biāo)與直角坐標(biāo)的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標(biāo)方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方程中,利用韋達(dá)定理得,,可得到,根據(jù)因?yàn)?,,成等比?shù)列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標(biāo)方程可化為,又由,可得曲線的直角坐標(biāo)方程為,由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,即直線的普通方程為;(2)把的參數(shù)方程代入拋物線方程中,得,由,設(shè)方程的兩根分別為,,則,,可得,.所以,,.因?yàn)?,,成等比?shù)列,所以,即,則,解得解得或(舍),所以實(shí)數(shù).【點(diǎn)睛】本題主要考查了極坐標(biāo)方程與直角坐標(biāo)方程,以及參數(shù)方程與普通方程的互化,以及直線參數(shù)方程的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)椋?,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(?。瑒t直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫海?,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.19、(1)證明見解析(2)證明見解析【解析】
(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當(dāng)時(shí),,;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,由零點(diǎn)存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因?yàn)?,且,故,故函?shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,故當(dāng)時(shí),;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時(shí),,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時(shí),函數(shù)有極小值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思想,屬于難題.20、(1)見解析;(2)能夠滿足.【解析】
(1)根據(jù)表中數(shù)據(jù),結(jié)合以“年份—2014”為橫坐標(biāo),“需求量”為縱坐標(biāo)的要求即可完成表格;(2)根據(jù)表中及所給公式可求得線性回歸方程,由線性回歸方程預(yù)測(cè)2020年的糧食需求量,即可作出判斷.【詳解】(1)由所給數(shù)據(jù)和已知條件,對(duì)數(shù)據(jù)處理表格如下:年份—2014024需求量—25701929(2)由題意可知,變量與之間具有線性相關(guān)關(guān)系,由(1)中表格可得,,,,.由上述計(jì)算結(jié)果可知,所求回歸直線方程為,利用回歸直線方程,可預(yù)測(cè)2020年的糧食需求量為:(萬(wàn)噸),因?yàn)?,故能夠滿足該地區(qū)的糧食需求.【點(diǎn)睛】本題考查了線性回歸直線的求法及預(yù)測(cè)應(yīng)用,屬于基礎(chǔ)題.21、(1)(2)【解析】
(1)由直線可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線,點(diǎn)到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長(zhǎng)公式求得,利用點(diǎn)到直線距離求得,根據(jù)直線l與線段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理?yè)Q元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)建信任足球裁判員試題及答案
- 會(huì)計(jì)工作總結(jié)與反思方案計(jì)劃
- 有效管理農(nóng)業(yè)植保員考試試題及答案
- 2025年新疆昌吉公務(wù)員錄用考試《行測(cè)》模擬題及答案
- 前臺(tái)文員的個(gè)人品牌打造計(jì)劃
- 帶動(dòng)班級(jí)團(tuán)結(jié)合作的活動(dòng)計(jì)劃
- 建立有效的合作關(guān)系計(jì)劃
- 2024年裁判員考試實(shí)操考核試題及答案
- 玩中學(xué)小班游戲教學(xué)法計(jì)劃
- 游泳救生員的社會(huì)責(zé)任與職業(yè)道德的試題及答案
- 全國(guó)第三屆職業(yè)技能大賽(CAD機(jī)械設(shè)計(jì)項(xiàng)目)選拔賽理論考試題庫(kù)(含答案)
- 2024年重慶市初中學(xué)業(yè)水平考試生物試卷含答案
- 《工業(yè)機(jī)器人技術(shù)基礎(chǔ) 》課件-第六章 工業(yè)機(jī)器人控制系統(tǒng)
- UL498標(biāo)準(zhǔn)中文版-2019插頭插座UL標(biāo)準(zhǔn)中文版
- 皮爾遜Ⅲ型曲線模比系數(shù)計(jì)算表
- MES制造執(zhí)行系統(tǒng)(MES)系統(tǒng) 用戶需求說明書
- 2024年中國(guó)酸奶酪市場(chǎng)調(diào)查研究報(bào)告
- 五一節(jié)前安全培訓(xùn)
- 高級(jí)考評(píng)員職業(yè)技能鑒定考試題及答案
- 建筑工程住宅水泥制品排氣道系統(tǒng)應(yīng)用技術(shù)規(guī)程
- 2024年中國(guó)紅木家具市場(chǎng)調(diào)查研究報(bào)告
評(píng)論
0/150
提交評(píng)論