




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省松滋市高中名校高考全國統(tǒng)考預測密卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱2.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.3.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.4.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.5.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關系不能確定6.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為()A. B. C. D.7.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.8.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.69.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢10.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知偶函數(shù)在區(qū)間內(nèi)單調遞減,,,,則,,滿足()A. B. C. D.12.已知定義在上的奇函數(shù)滿足,且當時,,則()A.1 B.-1 C.2 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列滿足,,則該數(shù)列的前5項的和為______________.14.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.15.設集合,(其中e是自然對數(shù)的底數(shù)),且,則滿足條件的實數(shù)a的個數(shù)為______.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經(jīng)過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.18.(12分)我國在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質的脈沖星候選體,其中有93顆已被確認為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀60年代天文學的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統(tǒng)計了93顆已被確認為新發(fā)現(xiàn)的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉周期的平均值.19.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.20.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.21.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數(shù),當時,試判斷的零點個數(shù).22.(10分)購買一輛某品牌新能源汽車,在行駛三年后,政府將給予適當金額的購車補貼.某調研機構對擬購買該品牌汽車的消費者,就購車補貼金額的心理預期值進行了抽樣調查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費群體對購車補貼金額的心理預期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費群體中隨機抽取人,記對購車補貼金額的心理預期值高于萬元的人數(shù)為,求的分布列和數(shù)學期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質,熟記三角函數(shù)基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.2、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.3、B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題4、D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.5、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.6、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功7、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.8、A【解析】
根據(jù)雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數(shù)學運算能力.9、D【解析】
根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點睛】本題考查了折線圖,意在考查學生的理解能力.10、A【解析】
設成立;反之,滿足,但,故選A.11、D【解析】
首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調性,不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關系的傳遞,屬于中檔題.12、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、31【解析】設,可化為,得,,,14、【解析】
先利用輔助角公式將轉化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數(shù),則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數(shù)的化簡,三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識的應用能力和計算能力,是基礎題.15、【解析】
可看出,這樣根據(jù)即可得出,從而得出滿足條件的實數(shù)的個數(shù)為1.【詳解】解:,或,在同一平面直角坐標系中畫出函數(shù)與的圖象,由圖可知與無交點,無解,則滿足條件的實數(shù)的個數(shù)為.故答案為:.【點睛】考查列舉法的定義,交集的定義及運算,以及知道方程無解,屬于基礎題.16、【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結合思想的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.18、(1)79顆;(2)5.5秒.【解析】
(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數(shù);(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發(fā)現(xiàn)的脈沖星自轉周期平均值為(秒).故新發(fā)現(xiàn)的脈沖星自轉周期平均值為5.5秒.【點睛】本題考查頻率分布直方圖的應用,涉及到平均數(shù)的估計值等知識,是一道容易題.19、(1)證明見解析;(2).【解析】
(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問題轉化為求到面的距離,利用等體積法求點面距離即可.【詳解】(1)因為棱柱是直三棱柱,所以又,所以面又,分別為AB,BC的中點所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點到平面的距離等于點到平面的距離設點到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于【點睛】本題考查由線面垂直推證面面垂直,涉及利用等體積法求點面距離,屬綜合中檔題.20、(1),(2)【解析】
(1)先由正弦定理,得到,進而可得,再由,即可得出結果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進而可求出結果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于??碱}型.21、(Ⅰ)詳見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)直播帶貨計劃書模板
- 中建2022工作報告
- 合同三方協(xié)議書范本
- 中國半胱胺鹽酸鹽項目創(chuàng)業(yè)計劃書
- 轉租協(xié)議書三方合同
- 環(huán)保農(nóng)場創(chuàng)業(yè)計劃書范文
- 中國商用采暖空氣源熱泵行業(yè)市場占有率及投資前景預測分析報告
- 餐飲員工合同協(xié)議書范本
- 2025年主治醫(yī)生述職報告模版(三)
- 企業(yè)數(shù)字化轉型路線圖與關鍵策略點
- 智能垃圾分類箱項目投資商業(yè)計劃書范本(投資融資分析)
- 2025至2030中國胸腺法新行業(yè)深度調查及投資前景研究報告
- 國有企業(yè)合同管理辦法3篇
- 廣西南寧市2025屆普通高中畢業(yè)班第二次適應性考試(二模)數(shù)學試題【含答案】
- 2025-2030中國調光玻璃行業(yè)規(guī)模走勢及投資可行性分析研究報告
- 《明朝的邊疆政策》課件
- 湖北省武漢市2025屆高中畢業(yè)生四月調研考試生物試題及答案(武漢四調)
- 2025年山東濟南歷城金融控股集團有限公司招聘筆試參考題庫含答案解析
- 技術合作協(xié)議范本
- 2025年度建筑施工安全演練計劃
- 托幼機構十項衛(wèi)生保健制度
評論
0/150
提交評論