版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆遼寧省營(yíng)口市重點(diǎn)中學(xué)高考沖刺數(shù)學(xué)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù),則的虛部為()A. B. C. D.12.一個(gè)袋中放有大小、形狀均相同的小球,其中紅球1個(gè)、黑球2個(gè),現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為;當(dāng)無(wú)放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為,則()A., B.,C., D.,3.已知等式成立,則()A.0 B.5 C.7 D.134.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.35.已知函數(shù),則的最小值為()A. B. C. D.6.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知集合,集合,則等于()A. B.C. D.8.?dāng)?shù)列滿(mǎn)足,且,,則()A. B.9 C. D.79.若sin(α+3π2A.-12 B.-1310.《九章算術(shù)》勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類(lèi)似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.11.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種12.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知二項(xiàng)式的展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù)和為512,其展開(kāi)式中第四項(xiàng)的系數(shù)__________.14.在平面直角坐標(biāo)系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點(diǎn)P,且點(diǎn)P關(guān)于直線x-y=0的對(duì)稱(chēng)點(diǎn)Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.15.設(shè)滿(mǎn)足約束條件,則的取值范圍是______.16.已知圓柱的上、下底面的中心分別為,,過(guò)直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過(guò)做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).18.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長(zhǎng)交直線于,兩點(diǎn),已知,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).19.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點(diǎn)為,曲線與軸的交點(diǎn)為,點(diǎn),求的周長(zhǎng)的最大值.20.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說(shuō)明理由.21.(12分)已知矩陣的一個(gè)特征值為4,求矩陣A的逆矩陣.22.(10分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先將,化簡(jiǎn)轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、B【解析】
分別求出兩個(gè)隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點(diǎn)睛】離散型隨機(jī)變量的分布列的計(jì)算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識(shí)求出隨機(jī)變量每一種取值情況的概率,然后利用公式計(jì)算期望和方差,注意在取球模型中摸出的球有放回與無(wú)放回的區(qū)別.3、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.4、B【解析】
根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿(mǎn)足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問(wèn)題的基本思路,屬于中檔題.5、C【解析】
利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.6、C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.7、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問(wèn)題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.8、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿(mǎn)足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.9、B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡(jiǎn)即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.10、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.11、C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰有3類(lèi)排法,再考慮兩者的順序,有種,剩余的3門(mén)全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門(mén)全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點(diǎn)睛】本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.12、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先令可得其展開(kāi)式各項(xiàng)系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開(kāi)式的通項(xiàng),即可得答案.【詳解】令,則有,解得,則二項(xiàng)式的展開(kāi)式的通項(xiàng)為,令,則其展開(kāi)式中的第4項(xiàng)的系數(shù)為,故答案為:【點(diǎn)睛】此題考查二項(xiàng)式定理的應(yīng)用,解題時(shí)需要區(qū)分展開(kāi)式中各項(xiàng)系數(shù)的和與各二項(xiàng)式系數(shù)和,屬于基礎(chǔ)題.14、【解析】
設(shè)圓C1上存在點(diǎn)P(x0,y0),則Q(y0,x0),分別滿(mǎn)足兩個(gè)圓的方程,列出方程組,轉(zhuǎn)化成兩個(gè)新圓有公共點(diǎn)求參數(shù)范圍.【詳解】設(shè)圓C1上存在點(diǎn)P(x0,y0)滿(mǎn)足題意,點(diǎn)P關(guān)于直線x-y=0的對(duì)稱(chēng)點(diǎn)Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點(diǎn)即可,所以|r-1|≤≤r+1,解得.故答案為:【點(diǎn)睛】此題考查圓與圓的位置關(guān)系,其中涉及點(diǎn)關(guān)于直線對(duì)稱(chēng)點(diǎn)問(wèn)題,兩個(gè)圓有公共點(diǎn)的判定方式.15、【解析】
作出可行域,將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計(jì)算出與,再由不等式的簡(jiǎn)單性質(zhì)即可求得答案.【詳解】作出滿(mǎn)足約束條件的可行域,顯然當(dāng)時(shí),z=0;當(dāng)時(shí)將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題,屬于簡(jiǎn)單題.16、【解析】
設(shè)圓柱的軸截面的邊長(zhǎng)為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長(zhǎng)為x,則由,得,∴.故答案為:【點(diǎn)睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進(jìn)而得到,再利用點(diǎn)差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進(jìn)而可得與互補(bǔ).【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補(bǔ).【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,屬于中檔題.18、(1)(2)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時(shí)滿(mǎn)足∴∴直線恒過(guò)定點(diǎn)【點(diǎn)睛】涉及橢圓的弦長(zhǎng)、中點(diǎn)、距離等相關(guān)問(wèn)題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.19、(1)曲線的直角坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】
(1)將代入,可得,所以曲線的直角坐標(biāo)方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù).(2)由題可設(shè),,,所以,,,所以,因?yàn)?,所以,所以?dāng),即時(shí),l取得最大值為,所以的周長(zhǎng)的最大值為.20、(1)見(jiàn)解析;(2).【解析】試題分析:(1)連交于可得是中點(diǎn),再根據(jù)面可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量,用表示面的一個(gè)法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點(diǎn).又面,且是面與面的交線,是的中點(diǎn).(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如圖),則各點(diǎn)坐標(biāo)為.設(shè)存在滿(mǎn)足要求,且,則由得:,面的一個(gè)法向量為,面的一個(gè)法向量為,由,得,解得,故存在,使二面角為直角,此時(shí).21、.【解析】
根據(jù)特征多項(xiàng)式可得,可得,進(jìn)而可得矩陣A的逆矩陣.【詳解】因?yàn)榫仃嚨奶卣鞫囗?xiàng)式,所以,所以.因?yàn)椋?,所?【點(diǎn)睛】本題考查矩陣的特征多項(xiàng)式以及逆矩陣的求解,是基礎(chǔ)題.22、(I)證明見(jiàn)解析;(II)1【解析】
(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過(guò)點(diǎn)D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計(jì)算夾
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《藥物分析實(shí)驗(yàn)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《現(xiàn)代教育技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《紀(jì)錄片賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《自動(dòng)檢測(cè)技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《色彩構(gòu)成》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《建筑力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《后期特效》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《電工與電子技術(shù)實(shí)驗(yàn)》2021-2022學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《測(cè)量學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 海商法修改船舶融資租賃合同
- 《市場(chǎng)營(yíng)銷(xiāo)》教案(第3周)市場(chǎng)營(yíng)銷(xiāo)環(huán)境分析
- 租地種香蕉合同
- 上海市虹口區(qū)2024學(xué)年第一學(xué)期期中考試初三物理試卷-學(xué)生版
- 舊市場(chǎng)提升改造方案
- 湖北漢江王甫洲水力發(fā)電限責(zé)任公司公開(kāi)招聘工作人員【6人】高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 統(tǒng)編版 七年級(jí)上冊(cè)(2024修訂) 第四單元 13 紀(jì)念白求恩 課件
- 外匯兌換居間勞務(wù)協(xié)議
- 少兒趣味編程Scratch綜合實(shí)戰(zhàn)《小車(chē)巡線》教學(xué)設(shè)計(jì)
- 第4課《公民的基本權(quán)利和義務(wù)》(課件)-部編版道德與法治六年級(jí)上冊(cè)
- 國(guó)開(kāi)(甘肅)2024年春《地域文化(專(zhuān))》形考任務(wù)1-4終考答案
- 檔案整理及數(shù)字化服務(wù)方案(技術(shù)標(biāo) )
評(píng)論
0/150
提交評(píng)論