江蘇省蘇州市2022-2023學(xué)年高二下學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標調(diào)研數(shù)學(xué)試題(含解析)_第1頁
江蘇省蘇州市2022-2023學(xué)年高二下學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標調(diào)研數(shù)學(xué)試題(含解析)_第2頁
江蘇省蘇州市2022-2023學(xué)年高二下學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標調(diào)研數(shù)學(xué)試題(含解析)_第3頁
江蘇省蘇州市2022-2023學(xué)年高二下學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標調(diào)研數(shù)學(xué)試題(含解析)_第4頁
江蘇省蘇州市2022-2023學(xué)年高二下學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標調(diào)研數(shù)學(xué)試題(含解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

蘇州市2022~2023學(xué)年第二學(xué)期學(xué)業(yè)質(zhì)量陽光指標調(diào)研卷高二數(shù)學(xué)注意事項學(xué)生在答題前請認真閱讀本注意事項及各題答題要求:1.本卷共6頁,包含單項選擇題(第1題~第8題)、多項選擇題(第9題~第12題)、填空題(第13題~第16題)、解答題(第17題~第22題).本卷滿分150分,答題時間為120分鐘.答題結(jié)束后,請將答題卡交回.2.答題前,請您務(wù)必將自己的姓名、調(diào)研序列號用0.5毫未黑色墨水的簽字筆填寫在答題卡的規(guī)定位置.3.請在答題卡上按照順序在對應(yīng)的答題區(qū)域內(nèi)作答,在其他位置作答一律無效.作答必須用0.5毫米黑色墨水的簽字筆.請注意字體工整,筆跡清楚.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知M,N是全集U的非空子集,且,則()A. B. C. D.2.已知,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.曲線在點處的切線與直線和圍成的三角形的面積為()A. B. C.1 D.24.為全面貫徹黨的教育方針,落實立德樹人的根本任務(wù),著力造就拔尖創(chuàng)新人才,某校為數(shù)學(xué)興趣小組購買了一些數(shù)學(xué)特色專著:《數(shù)學(xué)的意義》《現(xiàn)代世界中的數(shù)學(xué)》《數(shù)學(xué)問題》,其數(shù)量分別為x,y,z(單位:本).現(xiàn)了解到:①;②,則這些數(shù)學(xué)專著至少有()A.9本 B.10本 C.11本 D.12本5.已知定義在上的函數(shù)從x到的平均變化率為,則的單調(diào)增區(qū)間是()A. B. C. D.6.云計算是信息技術(shù)發(fā)展的集中體現(xiàn),近年來,我國云計算市場規(guī)模持續(xù)增長.已知某科技公司2018年至2022年云計算市場規(guī)模數(shù)據(jù),且市場規(guī)模y(單位:千萬元)與年份代碼x的關(guān)系可以用模型(其中e=2.71828…)擬合,設(shè),得到數(shù)據(jù)統(tǒng)計如下表:年份2018年2019年2020年2021年2022年x12345ym112036.654.6zn2.433.64由上表可得回歸方程,則m的值約為()A.2 B.7.4 C.1.96 D.6.97.已知A,B為某隨機試驗的兩個事件,為事件A的對立事件.若,,,則()A. B. C. D.8.已知實數(shù)a,b,c滿足,,,則()A. B. C. D.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.已知隨機變量X服從二項分布,則()A. B.C. D.10.已知函數(shù)及其導(dǎo)數(shù)的定義域均為R,則下列結(jié)論正確的有()A.若為奇函數(shù),則為偶函數(shù)B.若為奇函數(shù),則為奇函數(shù)C.若為奇函數(shù),則為偶函數(shù)D.若為偶函數(shù),則為偶函數(shù)11.已知函數(shù),,則下列結(jié)論正確的有()A.當(dāng)時,在處取得極小值B.當(dāng)時,有且只有一個零點C.若恒成立,則D.若恒成立,則12.現(xiàn)有12張不同編碼的抽獎券,其中只有2張有獎,若將抽獎券隨機地平均分給甲、乙、丙、丁4人,則()A.2張有獎券分給同一個人的概率是B.2張有獎券分給不同的人的概率是C.2張有獎券都沒有分給甲和乙的概率為D.2張有獎券分給甲和乙各一張的概率為三、填空題:本題共4小題,每小題5分,共20分.13.已知的展開式中存在常數(shù)項,請寫出一個符合條件的n的值:________.14.某新聞媒體舉辦主持人大賽,分為四個比賽項目:“新聞六十秒”“挑戰(zhàn)會客廳”“趣味繞口令”“創(chuàng)意百分百”,每個項目獨立打分,成績均服從正態(tài)分布,成績的均值及標準差如下表.小星在四個項目中的成績均為81分,則小星同學(xué)在第________個項目中的成績排名最靠后,在第________個項目中的成績排名最靠前.(填序號)序號一二三四項目新聞六十秒挑戰(zhàn)會客廳趣味繞口令創(chuàng)意百分百717581854.92.13.64.315.已知,,,則的最小值為________.16.已知不等式對任意恒成立,則的最大值為________.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17已知函數(shù).(1)求的極小值;(2)求在區(qū)間上的最大值和最小值.18.設(shè),其中,.(1)當(dāng)時,求的值;(2)在展開式中,若存在連續(xù)三項的系數(shù)之比為,求n的值.19.已知某校高一有450名學(xué)生(其中男生250名,女生200名).為了給學(xué)生提供更為豐富的校園文化生活,學(xué)校增設(shè)了兩門全新的校本課程A,B,學(xué)生根據(jù)自己的興趣愛好在這兩門課程中任選一門進行學(xué)習(xí).學(xué)校統(tǒng)計了學(xué)生的選課情況,得到如下的列聯(lián)表.選擇課程A選擇課程B總計男生150女生50總計(1)請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇課程與性別有關(guān)?說明你的理由;(2)從所有男生中按列聯(lián)表中選課情況進行分層抽樣,抽出10名男生,再從這10名男生中抽取3人做問卷調(diào)查,設(shè)這3人中選擇課程A的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.附:,.0.010.0050.0016.635787910.82820.已知函數(shù)滿足.當(dāng)時,.(1)若,求值;(2)當(dāng)時,都有,求的取值范圍.21.十番棋也稱十局棋,是圍棋比賽的一種形式.對弈雙方下十局棋,先勝六局者獲勝.這種形式的比賽因?qū)州^多,偶然性較小,在中國明清時期和日本都流行過.在古代比較有名的十番棋有清代黃龍士和徐星友的“血淚十局”以及范西屏和施襄夏的“當(dāng)湖十局”.已知甲、乙兩人進行圍棋比賽,每局比賽甲獲勝的概率和乙獲勝的概率均為,且各局比賽勝負相互獨立.(1)若甲、乙兩人進行十番棋比賽,求甲至多經(jīng)過七局比賽獲勝的概率;(2)甲、乙兩人約定新賽制如下:對弈雙方需賽滿局,結(jié)束后統(tǒng)計雙方的獲勝局數(shù),如果一方獲勝的局數(shù)多于另一方獲勝的局數(shù),則該方贏得比賽.研究表明:n越大,某一方贏得比賽的概率越大.請從數(shù)學(xué)角度證明上述觀點.22.已知函數(shù)與函數(shù)有相同的最小值.(1)求實數(shù)a的值;(2)求不等式的解集.

蘇州市2022~2023學(xué)年第二學(xué)期學(xué)業(yè)質(zhì)量陽光指標調(diào)研卷高二數(shù)學(xué)注意事項學(xué)生在答題前請認真閱讀本注意事項及各題答題要求:1.本卷共6頁,包含單項選擇題(第1題~第8題)、多項選擇題(第9題~第12題)、填空題(第13題~第16題)、解答題(第17題~第22題).本卷滿分150分,答題時間為120分鐘.答題結(jié)束后,請將答題卡交回.2.答題前,請您務(wù)必將自己的姓名、調(diào)研序列號用0.5毫未黑色墨水的簽字筆填寫在答題卡的規(guī)定位置.3.請在答題卡上按照順序在對應(yīng)的答題區(qū)域內(nèi)作答,在其他位置作答一律無效.作答必須用0.5毫米黑色墨水的簽字筆.請注意字體工整,筆跡清楚.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知M,N是全集U的非空子集,且,則()A. B. C. D.【答案】B【解析】【分析】根據(jù)韋恩圖以及集合與集合之間的關(guān)系可得答案.【詳解】因為M,N是全集U的非空子集,且,所以韋恩圖為:由韋恩圖可知,A不正確;B正確;C不正確;D不正確.故選:B2.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】A【解析】【分析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性以及充分不必要條件的定義可得答案.【詳解】若,則,則,所以“”是“”的充分條件;若,則,只有當(dāng)時,才能推出,所以“”不是“”的必要條件,所以“”是“”的充分不必要條件.故選:A3.曲線在點處的切線與直線和圍成的三角形的面積為()A. B. C.1 D.2【答案】C【解析】【分析】求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義得出切線方程.作出三條直線的圖象,求出相關(guān)點的坐標,即可得出答案.【詳解】由已知可得,,根據(jù)導(dǎo)數(shù)的幾何意義可知,曲線在點處的切線斜率為.所以,切線方程為.作出圖象解可得,.解可得,.所以,.故選:C.4.為全面貫徹黨的教育方針,落實立德樹人的根本任務(wù),著力造就拔尖創(chuàng)新人才,某校為數(shù)學(xué)興趣小組購買了一些數(shù)學(xué)特色專著:《數(shù)學(xué)的意義》《現(xiàn)代世界中的數(shù)學(xué)》《數(shù)學(xué)問題》,其數(shù)量分別為x,y,z(單位:本).現(xiàn)了解到:①;②,則這些數(shù)學(xué)專著至少有()A.9本 B.10本 C.11本 D.12本【答案】A【解析】【分析】根據(jù),先令,推出矛盾,再令,求出這些數(shù)學(xué)專著的本數(shù).【詳解】因為,,不妨先令,則,此時由于,,不合要求,舍去;令,則,此時,,滿足要求,故這些數(shù)學(xué)專著至少有本.故選:A5.已知定義在上的函數(shù)從x到的平均變化率為,則的單調(diào)增區(qū)間是()A. B. C. D.【答案】C【解析】【分析】求極限可得.設(shè),化簡可得.解,根據(jù)導(dǎo)數(shù)的概念,即可得出答案.【詳解】由已知可得,.設(shè),則.由可得,,所以,即時,有.根據(jù)導(dǎo)數(shù)的概念,可知時,有.所以,的單調(diào)增區(qū)間是.故選:C.6.云計算是信息技術(shù)發(fā)展的集中體現(xiàn),近年來,我國云計算市場規(guī)模持續(xù)增長.已知某科技公司2018年至2022年云計算市場規(guī)模數(shù)據(jù),且市場規(guī)模y(單位:千萬元)與年份代碼x的關(guān)系可以用模型(其中e=2.71828…)擬合,設(shè),得到數(shù)據(jù)統(tǒng)計如下表:年份2018年2019年2020年2021年2022年x12345ym112036.654.6zn2.433.64由上表可得回歸方程,則m的值約為()A.2 B.7.4 C.1.96 D.6.9【答案】B【解析】【分析】根據(jù)題意,由回歸方程過點,可得,再由即可求得.【詳解】由題意可得,,將代入可得,且,所以,又因為,即,所以.故選:B7.已知A,B為某隨機試驗的兩個事件,為事件A的對立事件.若,,,則()A. B. C. D.【答案】A【解析】【分析】根據(jù)已知可求得,,然后根據(jù)條件概率,即可得出答案.【詳解】由已知可得,,,根據(jù)條件概率可知,.故選:A.8.已知實數(shù)a,b,c滿足,,,則()A. B. C. D.【答案】B【解析】【分析】先利用二項式定理展開式判斷出的范圍,再構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷其單調(diào)性,可比較出的大小,再利用作差法比較的大小,從而可得結(jié)果.【詳解】因為,所以,令,則,當(dāng)時,,所以在遞增,因為,所以,所以,所以,即,由,得,則,因為,所以,,所以,所以,所以,即,綜上,故選:B【點睛】關(guān)鍵點點睛:此題考查比較大小,考查二項式定理的應(yīng)用,考查導(dǎo)數(shù)的應(yīng)用,解題的關(guān)鍵是利用二項式展開式判斷出的范圍,然后再比較的大小和的大小即可,考查計算能力,屬于較難題.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.已知隨機變量X服從二項分布,則()A. B.C. D.【答案】AD【解析】【分析】利用二項分布的期望、方差公式計算判斷AB;利用二項分布的概率公式計算判斷CD作答.【詳解】隨機變量X服從二項分布,對于A,,A正確;對于B,,B錯誤;對于C,,C錯誤;對于D,,D正確.故選:AD10.已知函數(shù)及其導(dǎo)數(shù)的定義域均為R,則下列結(jié)論正確的有()A.若為奇函數(shù),則為偶函數(shù)B.若為奇函數(shù),則為奇函數(shù)C.若為奇函數(shù),則為偶函數(shù)D.若為偶函數(shù),則為偶函數(shù)【答案】BC【解析】【分析】根據(jù)奇偶函數(shù)的性質(zhì),以及復(fù)合函數(shù)的求導(dǎo)法則,即可得出答案.【詳解】對于A項,由已知可得,設(shè),則,所以為奇函數(shù),故A項錯誤;對于B項,因為,為奇函數(shù),所以有,即,整理可得,所以為奇函數(shù),故B項正確;對于C項,由已知可得,根據(jù)復(fù)合函數(shù)的求導(dǎo)法則,兩邊同時求導(dǎo)可得,,所以,所以為偶函數(shù),故C項正確;對于D項,由已知可得,根據(jù)復(fù)合函數(shù)的求導(dǎo)法則,兩邊同時求導(dǎo)可得,,所以,所以奇函數(shù),故D項錯誤.故選:BC.11.已知函數(shù),,則下列結(jié)論正確的有()A.當(dāng)時,在處取得極小值B.當(dāng)時,有且只有一個零點C.若恒成立,則D.若恒成立,則【答案】ABD【解析】【分析】選項A、B;當(dāng)時,,結(jié)合導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的極值、零點問題;選項C、D:利用導(dǎo)數(shù)解決函數(shù)恒成立問題;【詳解】選項A、B:當(dāng)時,,當(dāng),單調(diào)遞減;當(dāng),單調(diào)遞增;故在處取得極小值,故A正確;又因為,所以,有且只有一個零點,故B正確;選項C、D:恒成立,當(dāng)時,;當(dāng)時,即恒成立,構(gòu)造函數(shù),,令,,在單調(diào)遞減,又,所以,所以在上單調(diào)遞減,,綜上可得,故C錯誤;函數(shù),函數(shù)單調(diào)遞減,則,故有,即;即恒成立,時,;,,又,所以選項D正確;故選:ABD.12.現(xiàn)有12張不同編碼的抽獎券,其中只有2張有獎,若將抽獎券隨機地平均分給甲、乙、丙、丁4人,則()A.2張有獎券分給同一個人的概率是B.2張有獎券分給不同的人的概率是C.2張有獎券都沒有分給甲和乙的概率為D.2張有獎券分給甲和乙各一張的概率為【答案】BD【解析】【分析】先分組,再分配,結(jié)合分類加法計數(shù)原理以及古典概型的概率公式,即可得出答案.【詳解】對于A項,將10張沒有獎的獎券按照1,3,3,3分成三組,不同的分法種數(shù)為,然后分配給4個人的分法為,所以,2張有獎券分給同一個人的概率是,故A項錯誤;對于B項,由A可得,2張有獎券分給不同的人的概率是,故B項正確;對于C項,由A可知,2張有獎券都分給丙的概率是;2張有獎券都分給丁的概率是;若2張有獎券,1張分給丙、1張分給丁將10張沒有獎的獎券按照2,2,3,3分成四組,不同的分法種數(shù)為,然后分配給4個人的分法為,所以,2張有獎券,1張分給丙、1張分給丁的概率是,所以,2張有獎券都沒有分給甲和乙的概率為,故C項錯誤;對于D項,因為2張有獎券,1張分給丙、1張分給丁的概率是,同理可得,2張有獎券分給甲和乙各一張的概率為,故D項正確.故選:BD.【點睛】方法點睛:根據(jù)已知,先將抽獎券分組,然后再分配.三、填空題:本題共4小題,每小題5分,共20分.13.已知的展開式中存在常數(shù)項,請寫出一個符合條件的n的值:________.【答案】3(答案不唯一,3的正整數(shù)倍即可)【解析】【分析】利用二項式定理寫出通項公式,得到,寫出答案.【詳解】的展開式的通項公式為,要想展開式中存在常數(shù)項,則要有解,即,為3的正整數(shù)倍即可故答案為:3(答案不唯一,3的正整數(shù)倍即可)14.某新聞媒體舉辦主持人大賽,分為四個比賽項目:“新聞六十秒”“挑戰(zhàn)會客廳”“趣味繞口令”“創(chuàng)意百分百”,每個項目獨立打分,成績均服從正態(tài)分布,成績的均值及標準差如下表.小星在四個項目中的成績均為81分,則小星同學(xué)在第________個項目中的成績排名最靠后,在第________個項目中的成績排名最靠前.(填序號)序號一二三四項目新聞六十秒挑戰(zhàn)會客廳趣味繞口令創(chuàng)意百分百717581854.92.13.64.3【答案】①.四②.二【解析】【分析】根據(jù)已知用各組表示出,然后根據(jù)正態(tài)分布的性質(zhì),即可得出答案.【詳解】項目一:由已知可得,,,則;項目二:由已知可得,,,則;項目三:由已知可得,,,則;項目四:由已知可得,,,則.根據(jù)正態(tài)分布的性質(zhì)可得,,所以,小星同學(xué)在第四個項目中的成績排名最靠后,在第二個項目中的成績排名最靠前.故答案為:四;二.15.已知,,,則的最小值為________.【答案】##【解析】【分析】利用將化為積為定值的形式,再根據(jù)基本不等式可求出結(jié)果.【詳解】因為,,所以,當(dāng)且僅當(dāng),即,又,所以,時,等號成立.故的最小值為.故答案為:.16.已知不等式對任意恒成立,則的最大值為________.【答案】2【解析】【分析】由題可得,對任意恒成立,根據(jù)二次不等式恒成立可得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的最值可得,進而可得,結(jié)合進而可得的最大值.【詳解】因為不等式對任意恒成立,所以,對任意恒成立,由可得,即,令,則,當(dāng)時,,函數(shù)單調(diào)遞增,顯然不恒成立,不合題意,當(dāng)時,由,可得,函數(shù)單調(diào)遞減,由可得,函數(shù)單調(diào)遞增,所以,即,所以,由,可得,即,因為函數(shù)單調(diào)遞增,且,所以,當(dāng)時,,即,所以的最大值為2.故答案為:2.【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知函數(shù).(1)求的極小值;(2)求在區(qū)間上的最大值和最小值.【答案】(1)2(2)最大值為6,最小值為2【解析】【分析】(1)求出導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)得出函數(shù)的單調(diào)區(qū)間,進而得出答案;(2)根據(jù)(1)的結(jié)論得出在區(qū)間上的單調(diào)性,結(jié)合端點處的函數(shù)值,即可得出答案.【小問1詳解】由已知可得,.由可得,或.由可得,,所以上單調(diào)遞減;由可得,或,所以在上單調(diào)遞增,在上單調(diào)遞增.所以,在處取得極大值,在處取得極小值.【小問2詳解】由(1)可得,在上單調(diào)遞增,在上單調(diào)遞減.又,,,所以,在區(qū)間上,在處取得最小值2,在處取得最大值6.18.設(shè),其中,.(1)當(dāng)時,求的值;(2)在展開式中,若存在連續(xù)三項的系數(shù)之比為,求n的值.【答案】(1)511(2)62【解析】【分析】(1)分別令以及,即可得出答案;(2)設(shè)第項的系數(shù)之比為,由已知得出展開式的系數(shù),列出方程組,整理化簡求解,即可得出答案.【小問1詳解】令可得,.令可得,,所以.【小問2詳解】設(shè)第項的系數(shù)之比為.展開式的通項公式,.則,整理可得,解得.19.已知某校高一有450名學(xué)生(其中男生250名,女生200名).為了給學(xué)生提供更為豐富的校園文化生活,學(xué)校增設(shè)了兩門全新的校本課程A,B,學(xué)生根據(jù)自己的興趣愛好在這兩門課程中任選一門進行學(xué)習(xí).學(xué)校統(tǒng)計了學(xué)生的選課情況,得到如下的列聯(lián)表.選擇課程A選擇課程B總計男生150女生50總計(1)請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇課程與性別有關(guān)?說明你的理由;(2)從所有男生中按列聯(lián)表中的選課情況進行分層抽樣,抽出10名男生,再從這10名男生中抽取3人做問卷調(diào)查,設(shè)這3人中選擇課程A的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.附:,.0.010.0050.0016.6357.87910.828【答案】(1)列聯(lián)表見解析,有的把握認為選擇課程與性別有關(guān);(2)分布列見解析,【解析】【分析】(1)根據(jù)男生和女生人數(shù),結(jié)合表中數(shù)據(jù),將列聯(lián)表補充完整,利用公式求得,與臨界值比較,即可得到結(jié)論;(2)按分層抽樣計算抽取10名男生中選擇課程A的人數(shù),列出X的所有可能取值,求出相應(yīng)的概率,即可求X的分布列和數(shù)學(xué)期望.【小問1詳解】由男生250名,女生200名,結(jié)合表中數(shù)據(jù),列聯(lián)表如圖所示,選擇課程A選擇課程B總計男生100150250女生50150200總計150300450,所以有的把握認為選擇課程與性別有關(guān).【小問2詳解】按分層抽樣計算抽取10名男生中,選擇課程A的人數(shù)為,則X的所有可能取值為0,1,2,3,,,,,則X的分布列為X0123P.20.已知函數(shù)滿足.當(dāng)時,.(1)若,求的值;(2)當(dāng)時,都有,求的取值范圍.【答案】(1)2(2)【解析】【分析】(1)根據(jù)當(dāng)時,,求出和,由求出,代入即可求出;(2)根據(jù)得在上恒成立,再分類討論對稱軸與區(qū)間的關(guān)系,求出在的值域,根據(jù)值域列式可求出結(jié)果.【小問1詳解】又因為當(dāng)時,,所以,,因為,所以,即,顯然,所以,所以,得.【小問2詳解】由得,當(dāng)時,,,因為當(dāng)時,都有,所以當(dāng)時,,解得,又因為,所以在上恒成立,方法1:①當(dāng)時,的對稱軸,所以在上的最小值為,最大值為,所以值域為,所以,解得,因為,所以不存在;②當(dāng)時,的對稱軸,所以在上的最小值為,最大值為,所以值域為,所以,解得,解得因為,所以;③當(dāng)時,的對稱軸,在上為減函數(shù),在上的最小值為,最大值為,所以值域為,所以,解得,因為,所以不存在滿足要求.綜上所述:的取值范圍為.方法2:必要性探路縮小的范圍,減少討論.由題意知,對,都有,所以,解得,則的對稱軸,所以當(dāng)時,在上的最小值為,最大值為,值域為,所以,解得,解得,又因為,所以.故的取值范圍為.【點睛】結(jié)論點睛:本題考查不等式的恒成立與有解問題,可按如下規(guī)則轉(zhuǎn)化:一般地,已知函數(shù),(1)若,總有成立,故;(2)若,總有成立,故;(3)若,使得成立,故;(4)若,使得,故.21.十番棋也稱十局棋,是圍棋比賽的一種形式.對弈雙方下十局棋,先勝六局者獲勝.這種形式的比賽因?qū)州^多,偶然性較小,在中國明清時期和日本都流行過.在古代比較有名的十番棋有清代黃龍士和徐星友的“血淚十局”以及范西屏和施襄夏的“當(dāng)湖十局”.已知甲、乙兩人進行圍棋比賽,每局比賽甲獲勝的概率和乙獲勝的概率均為,且各局比賽勝負相互獨立.(1)若甲、乙兩人進行十番棋比賽,求甲至多

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論