




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PAGE類型十二次函數(shù)與矩形有關(guān)的問題(專題訓(xùn)練)1.(2023·山東東營·統(tǒng)考中考真題)如圖,拋物線過點(diǎn)SKIPIF1<0,SKIPIF1<0,矩形SKIPIF1<0的邊SKIPIF1<0在線段SKIPIF1<0上(點(diǎn)B在點(diǎn)A的左側(cè)),點(diǎn)C,D在拋物線上,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.
(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)t為何值時(shí),矩形SKIPIF1<0的周長有最大值?最大值是多少?(3)保持SKIPIF1<0時(shí)的矩形SKIPIF1<0不動(dòng),向右平移拋物線,當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線SKIPIF1<0平分矩形SKIPIF1<0的面積時(shí),求拋物線平移的距離.【答案】(1)SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),矩形SKIPIF1<0的周長有最大值,最大值為SKIPIF1<0;(3)4【分析】(1)設(shè)拋物線的函數(shù)表達(dá)式為SKIPIF1<0,求出點(diǎn)C的坐標(biāo),將點(diǎn)C的坐標(biāo)代入即可求出該拋物線的函數(shù)表達(dá)式;(2)由拋物線的對(duì)稱性得SKIPIF1<0,則SKIPIF1<0,再得出SKIPIF1<0,根據(jù)矩形的周長公式,列出矩形周長的表達(dá)式,并將其化為頂點(diǎn)式,即可求解;(3)連接ASKIPIF1<0,SKIPIF1<0相交于點(diǎn)P,連接SKIPIF1<0,取SKIPIF1<0的中點(diǎn)Q,連接SKIPIF1<0,根據(jù)矩形的性質(zhì)和平移的性質(zhì)推出四邊形SKIPIF1<0是平行四邊形,則SKIPIF1<0,SKIPIF1<0.求出SKIPIF1<0時(shí),點(diǎn)A的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,即可得出結(jié)論.【詳解】(1)解:設(shè)拋物線的函數(shù)表達(dá)式為SKIPIF1<0.∵當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴點(diǎn)C的坐標(biāo)為SKIPIF1<0.將點(diǎn)C坐標(biāo)代入表達(dá)式,得SKIPIF1<0,解得SKIPIF1<0.∴拋物線的函數(shù)表達(dá)式為SKIPIF1<0.(2)解:由拋物線的對(duì)稱性得:SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.∴矩形SKIPIF1<0的周長為SKIPIF1<0SKIPIF1<0SKIPIF1<0.∵SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),矩形SKIPIF1<0的周長有最大值,最大值為SKIPIF1<0.(3)解:連接SKIPIF1<0,SKIPIF1<0相交于點(diǎn)P,連接SKIPIF1<0,取SKIPIF1<0的中點(diǎn)Q,連接SKIPIF1<0.
∵直線SKIPIF1<0平分矩形SKIPIF1<0的面積,∴直線SKIPIF1<0過點(diǎn)P..由平移的性質(zhì)可知,四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0.∵四邊形SKIPIF1<0是矩形,∴P是SKIPIF1<0的中點(diǎn).∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),點(diǎn)A的坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0.∴拋物線平移的距離是4.【點(diǎn)睛】本題主要考查了求二次函數(shù)的解析式,二次函數(shù)的圖象和性質(zhì),矩形的性質(zhì),平移的性質(zhì),解題的關(guān)鍵是掌握用待定系數(shù)法求解二次函數(shù)表達(dá)式的方法和步驟,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,矩形的性質(zhì),以及平移的性質(zhì).2.(2023·山西·統(tǒng)考中考真題)如圖,二次函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的正半軸交于點(diǎn)A,經(jīng)過點(diǎn)A的直線與該函數(shù)圖象交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)C.
(1)求直線SKIPIF1<0的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);(2)點(diǎn)SKIPIF1<0是第一象限內(nèi)二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作直線SKIPIF1<0軸于點(diǎn)SKIPIF1<0,與直線SKIPIF1<0交于點(diǎn)D,設(shè)點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的值;②當(dāng)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上方時(shí),連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0.設(shè)四邊形SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)表達(dá)式,并求出S的最大值.【答案】(1)SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0;(2)①2或3或SKIPIF1<0;②SKIPIF1<0,S的最大值為SKIPIF1<0【分析】(1)利用待定系數(shù)法可求得直線SKIPIF1<0的函數(shù)表達(dá)式,再求得點(diǎn)C的坐標(biāo)即可;(2)①分當(dāng)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上方和點(diǎn)SKIPIF1<0在直線SKIPIF1<0下方時(shí),兩種情況討論,根據(jù)SKIPIF1<0列一元二次方程求解即可;②證明SKIPIF1<0,推出SKIPIF1<0,再證明四邊形SKIPIF1<0為矩形,利用矩形面積公式得到二次函數(shù)的表達(dá)式,再利用二次函數(shù)的性質(zhì)即可求解.【詳解】(1)解:由SKIPIF1<0得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.解得SKIPIF1<0.∵點(diǎn)A在SKIPIF1<0軸正半軸上.∴點(diǎn)A的坐標(biāo)為SKIPIF1<0.設(shè)直線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0.將SKIPIF1<0兩點(diǎn)的坐標(biāo)SKIPIF1<0分別代入SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0.將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0.∴點(diǎn)C的坐標(biāo)為SKIPIF1<0;(2)①解:SKIPIF1<0點(diǎn)SKIPIF1<0在第一象限內(nèi)二次函數(shù)SKIPIF1<0的圖象上,且SKIPIF1<0軸于點(diǎn)SKIPIF1<0,與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,其橫坐標(biāo)為SKIPIF1<0.∴點(diǎn)SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0.∴SKIPIF1<0.∵點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.如圖,當(dāng)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上方時(shí),SKIPIF1<0.
∵SKIPIF1<0,∴SKIPIF1<0.解得SKIPIF1<0.如圖2,當(dāng)點(diǎn)SKIPIF1<0在直線SKIPIF1<0下方時(shí),SKIPIF1<0.
∵SKIPIF1<0,∴SKIPIF1<0.解得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.綜上所述,SKIPIF1<0的值為2或3或SKIPIF1<0;②解:如圖3,由(1)得,SKIPIF1<0.
∵SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,點(diǎn)B的坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0.∵點(diǎn)SKIPIF1<0在直線SKIPIF1<0上方,∴SKIPIF1<0.∵SKIPIF1<0軸于點(diǎn)SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∴SKIPIF1<0.∴四邊形SKIPIF1<0為平行四邊形.∵SKIPIF1<0軸,∴四邊形SKIPIF1<0為矩形.∴SKIPIF1<0.即SKIPIF1<0.SKIPIF1<0∵SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),S的最大值為SKIPIF1<0.【點(diǎn)睛】本題屬于二次函數(shù)綜合題,考查了二次函數(shù)、一次函數(shù)、等腰三角形、矩形、勾股定理、相似三角形等知識(shí)點(diǎn),第二問難度較大,需要分情況討論,畫出大致圖形,用含m的代數(shù)式表示出SKIPIF1<0是解題的關(guān)鍵.3.(2023·遼寧大連·統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0上有兩點(diǎn)SKIPIF1<0,其中點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,拋物線SKIPIF1<0過點(diǎn)SKIPIF1<0.過SKIPIF1<0作SKIPIF1<0軸交拋物線SKIPIF1<0另一點(diǎn)為點(diǎn)SKIPIF1<0.以SKIPIF1<0長為邊向上構(gòu)造矩形SKIPIF1<0.
(1)求拋物線SKIPIF1<0的解析式;(2)將矩形SKIPIF1<0向左平移SKIPIF1<0個(gè)單位,向下平移SKIPIF1<0個(gè)單位得到矩形SKIPIF1<0,點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0落在拋物線SKIPIF1<0上.①求SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)關(guān)系式,并直接寫出自變量SKIPIF1<0的取值范圍;②直線SKIPIF1<0交拋物線SKIPIF1<0于點(diǎn)SKIPIF1<0,交拋物線SKIPIF1<0于點(diǎn)SKIPIF1<0.當(dāng)點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)時(shí),求SKIPIF1<0的值;③拋物線SKIPIF1<0與邊SKIPIF1<0分別相交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0的對(duì)稱軸同側(cè),當(dāng)SKIPIF1<0時(shí),求點(diǎn)SKIPIF1<0的坐標(biāo).【答案】(1)SKIPIF1<0;(2)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)題意得出點(diǎn)SKIPIF1<0,SKIPIF1<0,待定系數(shù)法求解析式即可求解;(2)①根據(jù)平移的性質(zhì)得出SKIPIF1<0,根據(jù)點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0落在拋物線SKIPIF1<0上,可得SKIPIF1<0,進(jìn)而即可求解;②根據(jù)題意得出SKIPIF1<0,求得中點(diǎn)坐標(biāo),根據(jù)題意即可求解;③連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,勾股定理求得SKIPIF1<0,設(shè)SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0,求得SKIPIF1<0,求得SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0落在拋物線SKIPIF1<0上,將SKIPIF1<0代入SKIPIF1<0,即可求解.【詳解】(1)解:依題意,點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,代入拋物線SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,將點(diǎn)SKIPIF1<0,SKIPIF1<0,代入拋物線SKIPIF1<0,∴SKIPIF1<0解得:SKIPIF1<0∴拋物線SKIPIF1<0的解析式為SKIPIF1<0;(2)①解:∵SKIPIF1<0軸交拋物線SKIPIF1<0另一點(diǎn)為點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∵矩形SKIPIF1<0向左平移SKIPIF1<0個(gè)單位,向下平移SKIPIF1<0個(gè)單位得到矩形SKIPIF1<0,點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0落在拋物線SKIPIF1<0上∴SKIPIF1<0,SKIPIF1<0整理得SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0;②如圖所示,
∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,由①可得SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,分別代入SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0∵點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),∴SKIPIF1<0解得:SKIPIF1<0或SKIPIF1<0(大于4,舍去)③如圖所示,連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,
則SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,設(shè)SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0解得:SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)綜合運(yùn)用,矩形的性質(zhì),平移的性質(zhì),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.4.(2022·安徽)如圖1,隧道截面由拋物線的一部分AED和矩形ABCD構(gòu)成,矩形的一邊BC為12米,另一邊AB為2米.以BC所在的直線為x軸,線段BC的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy,規(guī)定一個(gè)單位長度代表1米.E(0,8)是拋物線的頂點(diǎn).(1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;(2)在隧道截面內(nèi)(含邊界)修建“”型或“”型柵欄,如圖2、圖3中粗線段所示,點(diǎn)SKIPIF1<0,SKIPIF1<0在x軸上,MN與矩形SKIPIF1<0的一邊平行且相等.柵欄總長l為圖中粗線段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,MN長度之和.請解決以下問題:(?。┬藿ㄒ粋€(gè)“”型柵欄,如圖2,點(diǎn)SKIPIF1<0,SKIPIF1<0在拋物線AED上.設(shè)點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,求柵欄總長l與m之間的函數(shù)表達(dá)式和l的最大值;(ⅱ)現(xiàn)修建一個(gè)總長為18的柵欄,有如圖3所示的修建“”型或“”型柵型兩種設(shè)計(jì)方案,請你從中選擇一種,求出該方案下矩形SKIPIF1<0面積的最大值,及取最大值時(shí)點(diǎn)SKIPIF1<0的橫坐標(biāo)的取值范圍(SKIPIF1<0在SKIPIF1<0右側(cè)).【答案】(1)y=SKIPIF1<0x2+8(2)(?。﹍=SKIPIF1<0m2+2m+24,l的最大值為26;(ⅱ)方案一:SKIPIF1<0+9≤P1橫坐標(biāo)≤SKIPIF1<0;方案二:SKIPIF1<0+SKIPIF1<0≤P1橫坐標(biāo)≤SKIPIF1<0【分析】(1)通過分析A點(diǎn)坐標(biāo),利用待定系數(shù)法求函數(shù)解析式;(2)(?。┙Y(jié)合矩形性質(zhì)分析得出P2的坐標(biāo)為(m,-SKIPIF1<0m2+8),然后列出函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)分析最值;(ⅱ)設(shè)P2P1=n,分別表示出方案一和方案二的矩形面積,利用二次函數(shù)的性質(zhì)分析最值,從而利用數(shù)形結(jié)合思想確定取值范圍.(1)由題意可得:A(-6,2),D(6,2),又∵E(0,8)是拋物線的頂點(diǎn),設(shè)拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y=ax2+8,將A(-6,2)代入,(-6)2a+8=2,解得:a=SKIPIF1<0,∴拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為y=SKIPIF1<0x2+8;(2)(?。唿c(diǎn)P1的橫坐標(biāo)為m(0<m≤6),且四邊形P1P2P3P4為矩形,點(diǎn)P2,P3在拋物線AED上,∴P2的坐標(biāo)為(m,SKIPIF1<0m2+8),∴P1P2=P3P4=MN=SKIPIF1<0m2+8,P2P3=2m,∴l(xiāng)=3(SKIPIF1<0m2+8)+2m=SKIPIF1<0m2+2m+24=SKIPIF1<0(m-2)2+26,∵SKIPIF1<0<0,∴當(dāng)m=2時(shí),l有最大值為26,即柵欄總長l與m之間的函數(shù)表達(dá)式為l=SKIPIF1<0m2+2m+24,l的最大值為26;(ⅱ)方案一:設(shè)P2P1=n,則P2P3=18-3n,∴矩形P1P2P3P4面積為(18-3n)n=-3n2+18n=-3(n-3)2+27,∵-3<0,∴當(dāng)n=3時(shí),矩形面積有最大值為27,此時(shí)P2P1=3,P2P3=9,令SKIPIF1<0x2+8=3,解得:x=SKIPIF1<0,∴此時(shí)P1的橫坐標(biāo)的取值范圍為SKIPIF1<0+9≤P1橫坐標(biāo)≤SKIPIF1<0,方案二:設(shè)P2P1=n,則P2P3=9-n,∴矩形P1P2P3P4面積為(9-n)n=-n2+9n=-(n-SKIPIF1<0)2+SKIPIF1<0,∵-1<0,∴當(dāng)n=SKIPIF1<0時(shí),矩形面積有最大值為SKIPIF1<0,此時(shí)P2P1=SKIPIF1<0,P2P3=SKIPIF1<0,令SKIPIF1<0x2+8=SKIPIF1<0,解得:x=SKIPIF1<0,∴此時(shí)P1的橫坐標(biāo)的取值范圍為SKIPIF1<0+SKIPIF1<0≤P1橫坐標(biāo)≤SKIPIF1<0.【點(diǎn)睛】本題考查二次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)解析式,準(zhǔn)確識(shí)圖,確定關(guān)鍵點(diǎn)的坐標(biāo),利用數(shù)形結(jié)合思想解題是關(guān)鍵.5.(2021·四川中考真題)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0和SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,拋物線的對(duì)稱軸交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交拋物線于點(diǎn)SKIPIF1<0.
(1)求拋物線的解析式;(2)將線段SKIPIF1<0繞著點(diǎn)SKIPIF1<0沿順時(shí)針方向旋轉(zhuǎn)得到線段SKIPIF1<0,旋轉(zhuǎn)角為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最小值.(3)SKIPIF1<0為平面直角坐標(biāo)系中一點(diǎn),在拋物線上是否存在一點(diǎn)SKIPIF1<0,使得以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形為矩形?若存在,請直接寫出點(diǎn)SKIPIF1<0的橫坐標(biāo);若不存在,請說明理由;【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)存在,SKIPIF1<0點(diǎn)的橫坐標(biāo)分別為:2,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0.【分析】(1)待定系數(shù)法求二次函數(shù)解析式,設(shè)解析式為SKIPIF1<0將SKIPIF1<0,SKIPIF1<0兩點(diǎn)代入求得SKIPIF1<0,c的值即可;(2)胡不歸問題,要求SKIPIF1<0的值,將折線化為直線,構(gòu)造相似三角形將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,再利用三角形兩邊之和大于第三邊求得SKIPIF1<0最值;(3)分2種情形討論:①AB為矩形的一條邊,利用等腰直角三角形三角形的性質(zhì)可以求得N點(diǎn)的坐標(biāo);②AB為矩形的對(duì)角線,設(shè)R為AB的中點(diǎn),RN=SKIPIF1<0AB,利用兩點(diǎn)距離公式求解方程可得N點(diǎn)的坐標(biāo).【詳解】解:(1)∵SKIPIF1<0過SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴拋物線的解析式為:SKIPIF1<0(2)在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0對(duì)稱軸SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)在同一點(diǎn)直線上時(shí),SKIPIF1<0最小為SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0最小值為SKIPIF1<0.(3)情形①如圖,AB為矩形的一條邊時(shí),聯(lián)立SKIPIF1<0得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是等腰SKIPIF1<0,SKIPIF1<0分別過SKIPIF1<0兩點(diǎn)作SKIPIF1<0的垂線,交SKIPIF1<0于點(diǎn)SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0也是等腰直角三角形設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0代入SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(不符題意,舍)SKIPIF1<0SKIPIF1<0同理,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0代入SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(不符題意,舍)SKIPIF1<0②AB為矩形的對(duì)角線,設(shè)R為AB的中點(diǎn),則SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0整理得:SKIPIF1<0解得:SKIPIF1<0(不符題意,舍),SKIPIF1<0(不符題意,舍),SKIPIF1<0,SKIPIF1<0SKIPIF1<0綜上所述:SKIPIF1<0點(diǎn)的橫坐標(biāo)分別為:2,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求解析式,三角形相似,勾股定理,二次函數(shù)與一次函數(shù)交點(diǎn),矩形的性質(zhì),等腰直角三角形性質(zhì),平面直角坐標(biāo)系中兩點(diǎn)距離計(jì)算等知識(shí),能正確做出輔助線,找到相似三角形是解題的關(guān)鍵.6.(2021·甘肅中考真題)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0與坐標(biāo)軸交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.點(diǎn)SKIPIF1<0為直線SKIPIF1<0下方拋物線上一動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線,垂足為SKIPIF1<0分別交直線SKIPIF1<0于點(diǎn)SKIPIF1<0.
(1)求拋物線SKIPIF1<0的表達(dá)式;(2)當(dāng)SKIPIF1<0,連接SKIPIF1<0,求SKIPIF1<0的面積;(3)①SKIPIF1<0是SKIPIF1<0軸上一點(diǎn),當(dāng)四邊形SKIPIF1<0是矩形時(shí),求點(diǎn)SKIPIF1<0的坐標(biāo);②在①的條件下,第一象限有一動(dòng)點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,求SKIPIF1<0周長的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)①SKIPIF1<0;②SKIPIF1<0【分析】(1)直接利用待定系數(shù)法即可求出答案.(2)由題意可求出SKIPIF1<0,SKIPIF1<0.利用三角函數(shù)可知在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,由此即可求出SKIPIF1<0,從而可求出SKIPIF1<0.即可求出D點(diǎn)坐標(biāo),繼而求出SKIPIF1<0.再根據(jù)SKIPIF1<0,即可求出FD的長,最后利用三角形面積公式即可求出最后答案.(3)①連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.根據(jù)矩形的性質(zhì)可知SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0可推出SKIPIF1<0.由SKIPIF1<0,可推出SKIPIF1<0.再根據(jù)直線BC的解析式可求出C點(diǎn)坐標(biāo),即可得出OC的長,由此可求出AC的長,即可求出CH的長,最后即得出OH的長,即可得出H點(diǎn)坐標(biāo).②在SKIPIF1<0中,利用勾股定理可求出SKIPIF1<0的長,再根據(jù)SKIPIF1<0結(jié)合SKIPIF1<0可推出SKIPIF1<0,即要使SKIPIF1<0最小,就要SKIPIF1<0最小,由題意可知當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),SKIPIF1<0為最?。辞蟪鯞C長即可.在SKIPIF1<0中,利用勾股定理求出SKIPIF1<0的長,即得出SKIPIF1<0周長的最小值為SKIPIF1<0.【詳解】解:(1)∵拋物線SKIPIF1<0過SKIPIF1<0兩點(diǎn),SKIPIF1<0,解得,SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0.同理,SKIPIF1<0.又SKIPIF1<0軸,SKIPIF1<0軸,∴在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.(3)①如圖,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.∵四邊形SKIPIF1<0是矩形,SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵四邊形SKIPIF1<0是矩形,SKIPIF1<0.SKIPIF1<0,∵當(dāng)x=0時(shí),SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.②在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0∴要使SKIPIF1<0最小,就要SKIPIF1<0最?。甋KIPIF1<0,∴當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0上時(shí),SKIPIF1<0為最?。赟KIPIF1<0中,SKIPIF1<0.SKIPIF1<0周長的最小值是SKIPIF1<0.
【點(diǎn)睛】本題為二次函數(shù)綜合題.考查二次函數(shù)的圖象和性質(zhì),解直角三角形,一次函數(shù)的圖象和性質(zhì),矩形的性質(zhì),平行線分線段成比例,三角形三邊關(guān)系以及勾股定理等知識(shí),綜合性強(qiáng),較難.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.7.(2021·山東中考真題)如圖,在平面直角坐標(biāo)系中,已知拋物線SKIPIF1<0交SKIPIF1<0軸于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.(1)求該拋物線的表達(dá)式;(2)點(diǎn)SKIPIF1<0為第四象限內(nèi)拋物線上一點(diǎn),連接SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,求SKIPIF1<0面積的最大值及此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo);(3)在(2)的條件下,將拋物線SKIPIF1<0向右平移經(jīng)過點(diǎn)SKIPIF1<0時(shí),得到新拋物線SKIPIF1<0,點(diǎn)SKIPIF1<0在新拋物線的對(duì)稱軸上,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)SKIPIF1<0,使得以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點(diǎn)的四邊形為矩形,若存在,請直接寫出點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請說明理由.參考:若點(diǎn)SKIPIF1<0、SKIPIF1<0,則線段SKIPIF1<0的中點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.【答案】(1)該拋物線的表達(dá)式為:SKIPIF1<0;(2)SKIPIF1<0面積最大值為8,此時(shí)P點(diǎn)的坐標(biāo)為:P(2,-6);(3)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)將兩個(gè)點(diǎn)分別代入拋物線可得關(guān)于a,b的二元一次方程組,可解得a,b;(2)設(shè)出P、Q兩點(diǎn)坐標(biāo),應(yīng)用三角形相似,及三角形面積公式,代入化簡可得一個(gè)二次函數(shù),求其最大值即可;(3)拋物線的平移可確定拋物線解析式及對(duì)稱軸,設(shè)出點(diǎn)E、F,應(yīng)用中點(diǎn)坐標(biāo)公式及矩形特點(diǎn)分成的三角形為直角三角形,可得出答案.【詳解】解:(1)將A(-1,0),B(4,0)代入拋物線SKIPIF1<0可得:SKIPIF1<0,解得:SKIPIF1<0,∴該拋物線的表達(dá)式為:SKIPIF1<0;(2)過點(diǎn)P作PN⊥x軸于點(diǎn)N,如圖所示:設(shè)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)SKIPIF1<0在拋物線上,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,根據(jù)拋物線的基本性質(zhì):對(duì)稱軸為SKIPIF1<0在SKIPIF1<0內(nèi),∴SKIPIF1<0在SKIPIF1<0取得最大值,代入得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0面積的最大值為8,此時(shí)點(diǎn)P的坐標(biāo)為:SKIPIF1<0.(3)在(2)的條件下,原拋物線解析式為SKIPIF1<0,將拋物線向右平移經(jīng)過點(diǎn)SKIPIF1<0,可知拋物線向右平移了SKIPIF1<0個(gè)單位長度,∴可得:SKIPIF1<0,化簡得平移后的拋物線:SKIPIF1<0,對(duì)稱軸為:SKIPIF1<0,由(2)得:A(-1,0),SKIPIF1<0,點(diǎn)E在對(duì)稱軸上,∴設(shè)E(3,e),點(diǎn)F(m,n),矩形AEPF,當(dāng)以AP為矩形的對(duì)角線時(shí),則AP的中點(diǎn)坐標(biāo)為:SKIPIF1<0,EF的中點(diǎn)坐標(biāo)為:SKIPIF1<0,根據(jù)矩形的性質(zhì)可得,兩個(gè)中點(diǎn)坐標(biāo)相同,可得:SKIPIF1<0解得:SKIPIF1<0∵矩形AEPF,∴SKIPIF1<0為直角三角形,∴SKIPIF1<0,③SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入③化簡可得:SKIPIF1<0,④∴將②代入④可得:SKIPIF1<0,化簡得:SKIPIF1<0,根據(jù)判別式得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0或SKIPIF1<0;當(dāng)以AP為矩形的邊時(shí),如圖所示:過點(diǎn)P分別作PG⊥x軸于點(diǎn)G,PH∥x軸,過點(diǎn)F作PH的垂線,垂足為H,設(shè)拋物線的對(duì)稱軸與x軸的交點(diǎn)為M,如圖,∴SKIPIF1<0,SKIPIF1<0,AM=4,∴SKIPIF1<0,∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,AE=PF,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴FH=2,∵點(diǎn)SKIPIF1<0,∴SKIPIF1<0,當(dāng)以AP為矩形的邊時(shí),如圖所示:同理可得SKIPIF1<0;綜上所述:以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點(diǎn)的四邊形為矩形,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【點(diǎn)睛】題目考查確定二次函數(shù)解析式及其基本性質(zhì)、矩形的性質(zhì)、勾股定理等,難點(diǎn)主要是依據(jù)圖像確定各點(diǎn)、線段間的關(guān)系,得出答案.8.(2021·黑龍江中考真題)綜合與探究如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,連接BC,SKIPIF1<0,對(duì)稱軸為SKIPIF1<0,點(diǎn)D為此拋物線的頂點(diǎn).(1)求拋物線的解析式;(2)拋物線上C,D兩點(diǎn)之間的距離是__________;(3)點(diǎn)E是第一象限內(nèi)拋物線上的動(dòng)點(diǎn),連接BE和CE.求SKIPIF1<0面積的最大值;(4)點(diǎn)P在拋物線對(duì)稱軸上,平面內(nèi)存在點(diǎn)Q,使以點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形為矩形,請直接寫出點(diǎn)Q的坐標(biāo).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【分析】(1)先根據(jù)對(duì)稱軸可得SKIPIF1<0的值,再根據(jù)SKIPIF1<0可得點(diǎn)SKIPIF1<0的坐標(biāo),代入拋物線的解析式即可得;(2)利用拋物線的解析式分別求出點(diǎn)SKIPIF1<0的坐標(biāo),再利用兩點(diǎn)之間的距離公式即可得;(3)過點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線,交SKIPIF1<0于點(diǎn)SKIPIF1<0,先利用待定系數(shù)法求出直線SKIPIF1<0的解析式,再設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,從而可得SKIPIF1<0和SKIPIF1<0的坐標(biāo),然后根據(jù)SKIPIF1<0可得SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求解即可得;(4)設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,分①當(dāng)SKIPIF1<0為矩形SKIPIF1<0的邊時(shí),②當(dāng)SKIPIF1<0為矩形SKIPIF1<0的邊時(shí),③當(dāng)SKIPIF1<0為矩形SKIPIF1<0的對(duì)角線時(shí)三種情況,再分別利用待定系數(shù)法求直線的解析式、矩形的性質(zhì)、點(diǎn)坐標(biāo)的平移變換規(guī)律求解即可得.【詳解】解:(1)SKIPIF1<0拋物線SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且點(diǎn)SKIPIF1<0在SKIPIF1<0軸負(fù)半軸上,SKIPIF1<0,將點(diǎn)SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,則拋物線的解析式為SKIPIF1<0;(2)SKIPIF1<0化成頂點(diǎn)式為SKIPIF1<0,則頂點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,則拋物線上SKIPIF1<0兩點(diǎn)之間的距離是SKIPIF1<0,故答案為:SKIPIF1<0;(3)如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線,交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,拋物線的對(duì)稱軸為SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入得:SKIPIF1<0,解得SKIPIF1<0,則直線SKIPIF1<0的解析式為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由二次函數(shù)的性質(zhì)得:在SKIPIF1<0內(nèi),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值,最大值為SKIPIF1<0,即SKIPIF1<0面積的最大值為SKIPIF1<0;(4)設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,由題意,分以下三種情況:①當(dāng)SKIPIF1<0為矩形SKIPIF1<0的邊時(shí),則SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入得:SKIPIF1<0,則直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0將點(diǎn)SKIPIF1<0先向右平移2個(gè)單位長度,再向上平移4個(gè)單位長度可得到點(diǎn)SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0點(diǎn)SKIPIF1<0平移至點(diǎn)SKIPIF1<0的方式與點(diǎn)SKIPIF1<0平移至點(diǎn)SKIPIF1<0的方式相同,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;②當(dāng)SKIPIF1<0為矩形SKIPIF1<0的邊時(shí),則SKIPIF1<0,同(4)①的方法可得:點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0;③當(dāng)SKIPIF1<0為矩形SKIPIF1<0的對(duì)角線時(shí),則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0時(shí),則將點(diǎn)SKIPIF1<0先向左平移2個(gè)單位長度,再向下平移SKIPIF1<0個(gè)單位長度可得到點(diǎn)SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0點(diǎn)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 4 My home A Lets learn Lets chant(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版英語四年級(jí)上冊
- Unit 2 We are family. Section B 3a - 3c 教學(xué)設(shè)計(jì) 2024-2025學(xué)年人教版(2024)七年級(jí)英語上冊
- 2025年度二手摩托車二手車鑒定評(píng)估與拍賣合同
- 2025年度豬場租賃與養(yǎng)殖廢棄物資源化利用技術(shù)研發(fā)合同
- Unit 1 Greetings(教學(xué)設(shè)計(jì))-2024-2025學(xué)年魯科版(五四學(xué)制) (三起)(2024)英語三年級(jí)上冊
- 2025-2031年中國鹽酸酚芐明片行業(yè)市場全景分析及投資戰(zhàn)略規(guī)劃報(bào)告
- 2025至2030年中國靚碧詩育發(fā)露數(shù)據(jù)監(jiān)測研究報(bào)告
- 茶廠批發(fā)合同范本
- 農(nóng)村廚師 合同范本
- 2025至2030年中國蜂巢提取物數(shù)據(jù)監(jiān)測研究報(bào)告
- 售電公司與電力用戶委托交易代理合同
- 基礎(chǔ)護(hù)理學(xué)試題及答案(各章節(jié))-基礎(chǔ)護(hù)理學(xué)第四版試題及答案
- 色彩發(fā)展的歷史課件
- 學(xué)生成長導(dǎo)師制工作手冊
- (2023年最新版)醫(yī)師執(zhí)業(yè)、變更執(zhí)業(yè)、多機(jī)構(gòu)備案申請審核表
- 醫(yī)療器械臨床試驗(yàn)質(zhì)量管理規(guī)范培訓(xùn)課件
- 建設(shè)工程工程量清單計(jì)價(jià)標(biāo)準(zhǔn)(2022)
- 小學(xué)道德與法治五年級(jí)下冊全冊優(yōu)質(zhì)教案(含課件和素材)
- 施耐德公司品牌戰(zhàn)略
- 三方聯(lián)測測量記錄表
- 啦啦操社團(tuán)教學(xué)計(jì)劃(共3頁)
評(píng)論
0/150
提交評(píng)論