版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省沂南縣重點中學2024屆中考數(shù)學猜題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC是⊙O的內接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°2.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π3.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.14.下列四個幾何體中,左視圖為圓的是()A. B. C. D.5.1cm2的電子屏上約有細菌135000個,135000用科學記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1036.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n27.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.88.若kb<0,則一次函數(shù)的圖象一定經(jīng)過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限9.1903年、英國物理學家盧瑟福通過實驗證實,放射性物質在放出射線后,這種物質的質量將減少,減少的速度開始較快,后來較慢,實際上,放射性物質的質量減為原來的一半所用的時間是一個不變的量,我們把這個時間稱為此種放射性物質的半衰期,如圖是表示鐳的放射規(guī)律的函數(shù)圖象,根據(jù)圖象可以判斷,鐳的半衰期為()A.810年 B.1620年 C.3240年 D.4860年10.如圖,空心圓柱體的左視圖是()A. B. C. D.11.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°12.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(
)A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.14.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.15.解不等式組請結合題意填空,完成本題的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在數(shù)軸上表示出來;(4)原不等式組的解集為___________.16.如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.17.計算(﹣a2b)3=__.18.無錫大劇院演出歌劇時,信號經(jīng)電波轉送,收音機前的北京觀眾經(jīng)過0.005秒以聽到,這個數(shù)據(jù)用科學記數(shù)法可以表示為_____秒.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.求證:△ADE≌△CBF;若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結論.20.(6分)解不等式組,并將它的解集在數(shù)軸上表示出來.21.(6分)在陽光體育活動時間,小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.22.(8分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,求k的取值范圍.23.(8分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?24.(10分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)25.(10分)如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)兩點.(1)求拋物線的解析式;(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標平面內有點P,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).26.(12分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數(shù)根;如果方程的兩實根為,,且,求m的值.27.(12分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)等腰三角形的性質以及三角形內角和定理可得∠A=50°,再根據(jù)平行線的性質可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內角和定理即可求得∠DBC的度數(shù).【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點睛】本題考查了等腰三角形的性質,圓周角定理,三角形內角和定理等,熟練掌握相關內容是解題的關鍵.2、C【解析】
由切線的性質定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質,圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.3、D【解析】
先求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質:①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減??;x>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a4、A【解析】
根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.5、B【解析】
根據(jù)科學記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【詳解】解:135000用科學記數(shù)法表示為:1.35×1.故選B.【點睛】科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.6、C【解析】
解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.7、B【解析】
首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.8、D【解析】
根據(jù)k,b的取值范圍確定圖象在坐標平面內的位置關系,從而求解.【詳解】∵kb<0,∴k、b異號。①當k>0時,b<0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;②當k<0時,b>0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;綜上所述,當kb<0時,一次函數(shù)y=kx+b的圖象一定經(jīng)過第一、四象限。故選:D【點睛】此題考查一次函數(shù)圖象與系數(shù)的關系,解題關鍵在于判斷圖象的位置關系9、B【解析】
根據(jù)半衰期的定義,函數(shù)圖象的橫坐標,可得答案.【詳解】由橫坐標看出1620年時,鐳質量減為原來的一半,故鐳的半衰期為1620年,故選B.【點睛】本題考查了函數(shù)圖象,利用函數(shù)圖象的意義及放射性物質的半衰期是解題關鍵.10、C【解析】
根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.11、B【解析】
根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等12、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、55°【解析】
由翻折性質得,∠BOG=∠B′OG,根據(jù)鄰補角定義可得.【詳解】解:由翻折性質得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點睛】考核知識點:補角,折疊.14、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).15、(1)x<1;(2)x≥﹣2;(1)見解析;(4)﹣2≤x<1;【解析】
(1)先移項,再合并同類項,求出不等式1的解集即可;(2)先去分母、移項,再合并同類項,求出不等式2的解集即可;(1)把兩不等式的解集在數(shù)軸上表示出來即可;(4)根據(jù)數(shù)軸上不等式的解集,求出其公共部分即可.【詳解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在數(shù)軸上表示出來如下:(4)原不等式組的解集為:﹣2≤x<1,故答案為:x<1、x≥﹣2、﹣2≤x<1.【點睛】本題主要考查一元一次不等式組的解法及在數(shù)軸上的表示。16、同位角相等,兩直線平行.【解析】試題解析:利用三角板中兩個60°相等,可判定平行考點:平行線的判定17、?a6b3【解析】
根據(jù)積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點睛】本題考查了積的乘方和冪的乘方,關鍵是掌握運算法則.18、5【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.005=5×10-1,故答案為:5×10-1.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.【解析】
(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先證明BE與DF平行且相等,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明四邊形BEDF是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分別為邊AB、CD的中點,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四邊形BEDF是平行四邊形,連接EF,在?ABCD中,E、F分別為邊AB、CD的中點,∴DF∥AE,DF=AE,∴四邊形AEFD是平行四邊形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四邊形BFDE是平行四邊形,∴四邊形BFDE是菱形.【點睛】1、平行四邊形的性質;2、全等三角形的判定與性質;3、菱形的判定20、x≤1,解集表示在數(shù)軸上見解析【解析】
首先根據(jù)不等式的解法求解不等式,然后在數(shù)軸上表示出解集.【詳解】去分母,得:3x﹣2(x﹣1)≤3,去括號,得:3x﹣2x+2≤3,移項,得:3x﹣2x≤3﹣2,合并同類項,得:x≤1,將解集表示在數(shù)軸上如下:【點睛】本題考查了解一元一次不等式,解題的關鍵是掌握不等式的解法以及在數(shù)軸上表示不等式的解集.21、(1)(2)【解析】
(1)由小亮打第一場,再從其余三人中隨機選取一人打第一場,求出恰好選中大剛的概率即可;(2)畫樹狀圖得出所有等可能的情況數(shù),找出小瑩和小芳伸“手心”或“手背”恰好相同的情況數(shù),即可求出所求的概率.【詳解】解:(1)∵確定小亮打第一場,∴再從小瑩,小芳和大剛中隨機選取一人打第一場,恰好選中大剛的概率為;(2)列表如下:所有等可能的情況有8種,其中小瑩和小芳伸“手心”或“手背”恰好相同且與大剛不同的結果有2個,則小瑩與小芳打第一場的概率為.【點睛】本題主要考查了列表法與樹狀圖法;概率公式.22、0≤k≤且k≠1.【解析】
根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可求出k的取值范圍.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【點睛】本題考查了根的判別式、二次根式以及一元二次方程的定義,根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,列出關于k的一元一次不等式組是解題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.23、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】
(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數(shù)量關系,列出方程組或不等式組解決問題.24、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質求解問題.【詳解】(1)CF與BD位置關系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結論成立.理由是:過點A作GA⊥AC交BC于點G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點A作AQ⊥BC交CB的延長線于點Q,①點D在線段BC上運動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點D在線段BC延長線上運動時,∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點睛】綜合性題型,解題關鍵是靈活運用所學全等、相似、正方形等知識點.25、(1)拋物線的解析式是y=x2﹣3x;(2)D點的坐標為(4,﹣4);(3)點P的坐標是()或().【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式進而得出答案即可;
(2)首先求出直線OB的解析式為y=x,進而將二次函數(shù)以一次函數(shù)聯(lián)立求出交點即可;
(3)首先求出直線A′B的解析式,進而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進而求出點P1的坐標,再利用翻折變換的性質得出另一點的坐標.試題解析:(1)∵拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)∴將A與B兩點坐標代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設直線OB的解析式為y=k1x,由點B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個公共點,∴△=16﹣2m=0,解得:m=8,此時x1=x2=4,y=x2﹣3x=﹣4,∴D點的坐標為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點A關于直線OB的對稱點A′的坐標是(0,6),根據(jù)軸對稱性質和三線合一性質得出∠A′BO=∠ABO,設直線A′B的解析式為y=k2x+6,過點(8,8),∴8k2+6=8,解得:k2=,∴直線A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點N在直線A′B上,∴設點N(n,),又點N在拋物線y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合題意,舍去)∴N點的坐標為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人健康保險合同范本2篇
- 長沙南方職業(yè)學院《俄語基礎》2023-2024學年第一學期期末試卷
- 2025年度智能倉儲物流設施建設合同范本3篇
- 2024物業(yè)權益讓與擔保合同 權益方與受讓方協(xié)議
- 思政教育團隊建設與教師專業(yè)成長
- 二零二五版集成墻板家裝裝修環(huán)保評估合同范本3篇
- 2025年校園歷史文化宣傳欄制作與教育推廣合同3篇
- 二零二五年度建筑設計創(chuàng)意大賽參賽合同2篇
- 2025年新型農業(yè)技術培訓合同范本3篇
- 2025年度定制化鋁材加工與銷售一體化合同4篇
- 獵聘-2024高校畢業(yè)生就業(yè)數(shù)據(jù)報告
- 2024虛擬現(xiàn)實產業(yè)布局白皮書
- 車站值班員(中級)鐵路職業(yè)技能鑒定考試題及答案
- JTG∕T E61-2014 公路路面技術狀況自動化檢測規(guī)程
- 高中英語短語大全(打印版)
- 軟件研發(fā)安全管理制度
- 三位數(shù)除以兩位數(shù)-豎式運算300題
- 寺院消防安全培訓課件
- 比摩阻-管徑-流量計算公式
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、異丙醇和正丁醇檢驗
- 五年級數(shù)學應用題100道
評論
0/150
提交評論