




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第06講拓展二:利用導(dǎo)數(shù)研究不等式能成立(有解)問(wèn)題一、知識(shí)點(diǎn)歸納1、分離參數(shù)法用分離參數(shù)法解含參不等式恒成立問(wèn)題,可以根據(jù)不等式的性質(zhì)將參數(shù)分離出來(lái),得到一個(gè)一端是參數(shù),另一端是變量表達(dá)式的不等式;步驟:①分類(lèi)參數(shù)(注意分類(lèi)參數(shù)時(shí)自變量SKIPIF1<0的取值范圍是否影響不等式的方向)②轉(zhuǎn)化:SKIPIF1<0,使得SKIPIF1<0能成立SKIPIF1<0SKIPIF1<0;SKIPIF1<0,使得SKIPIF1<0能成立SKIPIF1<0SKIPIF1<0.③求最值.2、分類(lèi)討論法如果無(wú)法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類(lèi)討論求解,如果是二次不等式恒成立的問(wèn)題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0)求解.3、等價(jià)轉(zhuǎn)化法當(dāng)遇到SKIPIF1<0型的不等式有解(能成立)問(wèn)題時(shí),一般采用作差法,構(gòu)造“左減右”的函數(shù)SKIPIF1<0或者“右減左”的函數(shù)SKIPIF1<0,進(jìn)而只需滿(mǎn)足SKIPIF1<0,或者SKIPIF1<0,將比較法的思想融入函數(shù)中,轉(zhuǎn)化為求解函數(shù)的最值的問(wèn)題.4、最值定位法解決雙參不等式問(wèn)題(1)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<05、值域法解決雙參等式問(wèn)題SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立①SKIPIF1<0,求出SKIPIF1<0的值域,記為SKIPIF1<0②SKIPIF1<0求出SKIPIF1<0的值域,記為SKIPIF1<0③則SKIPIF1<0,求出參數(shù)取值范圍.二、題型精講方法一:分離變量法1.(2022下·江西·高二期末)已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的極小值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有極大值.(1)求函數(shù)SKIPIF1<0;(2)存在SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)存在SKIPIF1<0,使得SKIPIF1<0,等價(jià)于SKIPIF1<0,∵SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.2.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值;(2)若存在SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)m的最小值.【答案】(1)極小值為SKIPIF1<0,無(wú)極大值(2)4【詳解】(1)由SKIPIF1<0,令SKIPIF1<0;令SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0在SKIPIF1<0處取得極小值,且為SKIPIF1<0,無(wú)極大值;(2)由SKIPIF1<0能成立,問(wèn)題轉(zhuǎn)化為SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0;由SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,則SKIPIF1<0,故m的最小值為4.3.(2023上·海南·高三海南中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性;(2)若存在SKIPIF1<0,使不等式SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減.(2)當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0存在SKIPIF1<0,使得SKIPIF1<0成立,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.4.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0SKIPIF1<0為實(shí)常數(shù)).若存在SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】SKIPIF1<0【詳解】由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0,即存在SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.方法二:分類(lèi)討論法1.(2023下·北京海淀·高二中央民族大學(xué)附屬中學(xué)??计谥校┮阎猄KIPIF1<0(1)若SKIPIF1<0在SKIPIF1<0處取到極值,求SKIPIF1<0的值;(2)若存在SKIPIF1<0使得SKIPIF1<0,求SKIPIF1<0的范圍;(3)直接寫(xiě)出SKIPIF1<0零點(diǎn)的個(gè)數(shù),結(jié)論不要求證明.【答案】(1)1(2)SKIPIF1<0(3)SKIPIF1<0且SKIPIF1<0有一個(gè)零點(diǎn);SKIPIF1<0且SKIPIF1<0有兩個(gè)零點(diǎn)【詳解】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0處取到極大值.故SKIPIF1<0.(2)注意到SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0恒成立,于是SKIPIF1<0在SKIPIF1<0單調(diào)遞增;則存在SKIPIF1<0使得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),令:SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,
于是可以得到函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.則SKIPIF1<0有極大值點(diǎn)SKIPIF1<0.若SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0單調(diào)遞減,于是SKIPIF1<0,則SKIPIF1<0滿(mǎn)足題意;若SKIPIF1<0,則SKIPIF1<0,則此時(shí)不存在相應(yīng)的SKIPIF1<0;若SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0單調(diào)遞增,于是SKIPIF1<0.則SKIPIF1<0滿(mǎn)足題意.綜上:SKIPIF1<0的范圍是SKIPIF1<0;(3)SKIPIF1<0且SKIPIF1<0有一個(gè)零點(diǎn);SKIPIF1<0且SKIPIF1<0有兩個(gè)零點(diǎn)2.(2023上·重慶沙坪壩·高二重慶南開(kāi)中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,其中SKIPIF1<0是自然對(duì)數(shù)的底數(shù).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上有解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)見(jiàn)解析(2)SKIPIF1<0【詳解】(1)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.綜上:SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上有解,即求SKIPIF1<0當(dāng)SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0不成立,故不滿(mǎn)足題意.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減當(dāng)SKIPIF1<0時(shí),所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0成立,滿(mǎn)足題意.SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0SKIPIF1<0不成立,舍去SKIPIF1<0時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0綜上SKIPIF1<0的取值范圍為:SKIPIF1<03.(2022上·福建福州·高二校聯(lián)考期末)已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求曲線(xiàn)SKIPIF1<0在點(diǎn)(0,f(0))處的切線(xiàn)方程;(2)若存在SKIPIF1<0,使得不等式SKIPIF1<0成立,求m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,定義域?yàn)镽,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0.所以曲線(xiàn)SKIPIF1<0在點(diǎn)(0,f(0))處的切線(xiàn)方程為:SKIPIF1<0,即SKIPIF1<0.(2)不等式SKIPIF1<0可化為:SKIPIF1<0,即存在SKIPIF1<0,使得不等式SKIPIF1<0成立.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得:SKIPIF1<0令SKIPIF1<0,解得:SKIPIF1<0故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,這與SKIPIF1<0相矛盾,舍去;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,不符合題意,應(yīng)舍去.綜上所述:m的取值范圍為:SKIPIF1<0.4.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線(xiàn)SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0處的切線(xiàn)方程;(2)若在區(qū)間SKIPIF1<0,SKIPIF1<0內(nèi)至少存在一個(gè)實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】解:(1)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,曲線(xiàn)SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0處的切線(xiàn)斜率:SKIPIF1<0(1)SKIPIF1<0,故曲線(xiàn)SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0處的切線(xiàn)方程為:SKIPIF1<0,所求切線(xiàn)方程為:SKIPIF1<0;(2)SKIPIF1<0,①當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為單調(diào)增函數(shù),此時(shí),SKIPIF1<0(1)SKIPIF1<0,解得:SKIPIF1<0,與SKIPIF1<0矛盾,不符合題意,②當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的變化如下:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0SKIPIF1<0遞減極小值遞增此時(shí),SKIPIF1<0,解得:SKIPIF1<0,與SKIPIF1<0矛盾,不符合題意,③當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為單調(diào)減函數(shù)SKIPIF1<0,解得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,綜上:實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.方法三:等價(jià)轉(zhuǎn)化法1.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,若在SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,若SKIPIF1<0使SKIPIF1<0能成立,則對(duì)于SKIPIF1<0,SKIPIF1<0即可,而SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0顯然成立,故SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,可得SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0不成立;綜上:SKIPIF1<0.2.(2023上·北京·高三北京五十五中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線(xiàn)為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(2)設(shè)函數(shù)SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間與極值;(3)若存在SKIPIF1<0,使得SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)答案見(jiàn)詳解(3)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線(xiàn)為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0在SKIPIF1<0處取得極大值,極大值為SKIPIF1<0,無(wú)極小值.(3)令SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,等價(jià)于在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,不合題意,綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.3.(2023·上海靜安·統(tǒng)考一模)已知函數(shù)f(x)=-2alnx-SKIPIF1<0,g(x)=ax-(2a+1)lnx-SKIPIF1<0,其中a∈R.(1)若x=2是函數(shù)f(x)的駐點(diǎn),求實(shí)數(shù)a的值;(2)當(dāng)a>0時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;(3)若存在x[SKIPIF1<0,e2](e為自然對(duì)數(shù)的底),使得不等式f(x)g(x)成立,求實(shí)數(shù)a的取值范圍.【答案】(1)SKIPIF1<0(2)答案見(jiàn)解析(3)SKIPIF1<0【詳解】(1)若SKIPIF1<0是函數(shù)SKIPIF1<0的駐點(diǎn),則SKIPIF1<0,可得SKIPIF1<0,即得SKIPIF1<0.(2)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),對(duì)任意的SKIPIF1<0,SKIPIF1<0,此時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,此時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.③當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,此時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(3)由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,使得不等式SKIPIF1<0成立,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0上嚴(yán)格遞增,在SKIPIF1<0上嚴(yán)格遞減,∴函數(shù)SKIPIF1<0在端點(diǎn)SKIPIF1<0或SKIPIF1<0處取得最小值.∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<04.(2022下·北京·高二北師大二附中校考階段練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0是自然對(duì)數(shù)的底數(shù).(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極值.(2)若SKIPIF1<0在其定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.(3)設(shè)SKIPIF1<0,若在SKIPIF1<0上至少存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)函數(shù)的極大值為SKIPIF1<0,極小值為SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)解:由已知SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0.令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,函數(shù)在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上為單調(diào)增函數(shù),在SKIPIF1<0,SKIPIF1<0上為單調(diào)減函數(shù),所以函數(shù)的極大值為SKIPIF1<0,極小值為SKIPIF1<0.SKIPIF1<0函數(shù)的極大值為SKIPIF1<0,極小值為SKIPIF1<0.(2)解:SKIPIF1<0,令SKIPIF1<0,要使SKIPIF1<0在其定義域SKIPIF1<0內(nèi)是單調(diào)函數(shù),只需SKIPIF1<0在SKIPIF1<0內(nèi),滿(mǎn)足SKIPIF1<0或SKIPIF1<0恒成立,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)樵赟KIPIF1<0內(nèi)有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,綜上,SKIPIF1<0的取值范圍為SKIPIF1<0或SKIPIF1<0.(3)解:SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0上是減函數(shù),SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.①SKIPIF1<0時(shí),由(2)知SKIPIF1<0在SKIPIF1<0,SKIPIF1<0遞減SKIPIF1<0(1)SKIPIF1<0,不合題意.②SKIPIF1<0時(shí),由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0不合題意③SKIPIF1<0時(shí),由(1)知SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上是增函數(shù),故只需SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0(e)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.故SKIPIF1<0的取值范圍為SKIPIF1<0,SKIPIF1<0.方法四:最值定位法解決雙參不等式問(wèn)題1.(2023上·福建莆田·高三莆田一中??计谥校┮阎瘮?shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的最小值;(2)若SKIPIF1<0,且對(duì)SKIPIF1<0,都SKIPIF1<0,使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)因?yàn)楹瘮?shù)SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上遞減.SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,最小值為SKIPIF1<0.(2)令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立;又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增;SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0.綜上,只需SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.2.(2023上·江蘇蘇州·高三常熟中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0是自然對(duì)數(shù)的底數(shù).(1)求函數(shù)SKIPIF1<0的極值;(2)對(duì)SKIPIF1<0,總存在SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【詳解】(1)解:因?yàn)镾KIPIF1<0,該函數(shù)的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,列表如下:xSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減SKIPIF1<0,SKIPIF1<0.(2)解:由題意可得SKIPIF1<0,由(1)可知SKIPIF1<0在SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0有解,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0單調(diào)遞增極大值SKIPIF1<0單調(diào)遞減SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0.3.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)m的取值范圍.【答案】SKIPIF1<0【詳解】將SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,等價(jià)為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故m的取值范圍為SKIPIF1<0.4.(2023·全國(guó)·高三專(zhuān)題練習(xí))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若曲線(xiàn)SKIPIF1<0在SKIPIF1<0處的切線(xiàn)過(guò)點(diǎn)SKIPIF1<0,求SKIPIF1<0的值;(2)設(shè)SKIPIF1<0若對(duì)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0,即切點(diǎn)為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.(2)“對(duì)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立”,即“在SKIPIF1<0上,SKIPIF1<0”.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,解得SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞增,SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.解得:SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.綜上所述:SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<05.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),若對(duì)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見(jiàn)解析(2)SKIPIF1<0【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,可得兩根分別為1,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減.(2)SKIPIF1<0,SKIPIF1<0,由(1)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0.對(duì)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上的最小值不大于SKIPIF1<0在SKIPIF1<0上的最小值SKIPIF1<0,(*)又SKIPIF1<0,∴①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)與(*)矛盾;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,同樣與(*)矛盾;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解不等式SKIPIF1<0,可得SKIPIF1<0,∴實(shí)數(shù)b的取值范圍為SKIPIF1<0.方法五:值域法解決雙參等式問(wèn)題1.(2023上·安徽·高三池州市第一中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0(其中SKIPIF1<0且SKIPIF1<0)是奇函數(shù).(1)求SKIPIF1<0,SKIPIF1<0的值并判斷函數(shù)SKIPIF1<0的單調(diào)性;(2)已知二次函數(shù)SKIPIF1<0滿(mǎn)足SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 熱電聯(lián)產(chǎn)集中供熱工程項(xiàng)目可行性研究報(bào)告(范文參考)
- 2024年農(nóng)業(yè)植保員能力素質(zhì)測(cè)評(píng)試題及答案
- 一步一步準(zhǔn)備體育經(jīng)紀(jì)人考試的試題及答案
- 農(nóng)作物種子繁育員技術(shù)標(biāo)準(zhǔn)試題及答案
- 風(fēng)能資源開(kāi)發(fā)項(xiàng)目可行性研究報(bào)告
- 2024年籃球裁判員考試備考策略試題及答案
- 城鎮(zhèn)供水一體化工程項(xiàng)目可行性研究報(bào)告(范文參考)
- 快速理解農(nóng)業(yè)植保員資格試題及答案
- 體育經(jīng)紀(jì)人與運(yùn)動(dòng)表演藝術(shù)的銜接試題及答案
- 2024年農(nóng)藝植保員測(cè)試題目試題及答案
- 服裝生產(chǎn)授權(quán)委托書(shū)
- 口腔科水路清洗消毒制度
- 近視防控技術(shù)的進(jìn)展
- 蘇州市智能建造試點(diǎn)項(xiàng)目評(píng)分表(暫行)
- 工作場(chǎng)所安全與環(huán)境保護(hù)管理制度
- 電氣自動(dòng)化試題及答案
- 虹橋商務(wù)區(qū)核心區(qū)一期及南北片區(qū)集中供能專(zhuān)項(xiàng)規(guī)劃
- 廣東省醫(yī)療服務(wù)價(jià)格項(xiàng)目及價(jià)格
- 第3課我愛(ài)我家教學(xué)課件2021-2022學(xué)年贛美版美術(shù)八年級(jí)下冊(cè)
- 2024年江蘇省泰州市泰興市中考一模物理試卷(含答案解析)
- 培訓(xùn)機(jī)構(gòu)學(xué)校:教師管理手冊(cè)
評(píng)論
0/150
提交評(píng)論