版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省周口市鄲城一高2024年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂面內(nèi),若飛機(jī)的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫?,?jīng)過1min后又看到山頂?shù)母┙菫?,則山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km2.已知直線:,:,若:;,則是的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.函數(shù)的部分圖象如圖所示,函數(shù),則下列結(jié)論正確的是()A.B.函數(shù)與的圖象均關(guān)于直線對(duì)稱C.函數(shù)與的圖象均關(guān)于點(diǎn)對(duì)稱D.函數(shù)與在區(qū)間上均單調(diào)遞增4.?dāng)?shù)列,…的一個(gè)通項(xiàng)公式是()A.B.C.D.5.函數(shù)y=sin2x的圖象可由函數(shù)A.向左平移π3B.向左平移π6C.向右平移π3D.向右平移π66.若,,,,則等于()A. B. C. D.7.已知函數(shù),下列結(jié)論不正確的是(
)A.函數(shù)的最小正周期為B.函數(shù)在區(qū)間內(nèi)單調(diào)遞減C.函數(shù)的圖象關(guān)于軸對(duì)稱D.把函數(shù)的圖象向左平移個(gè)單位長度可得到的圖象8.已知三棱錐,若平面,,,,則三棱錐外接球的表面積為()A. B. C. D.9.某小組共有5名學(xué)生,其中男生3名,女生2名,現(xiàn)選舉2名代表,則恰有1名女生當(dāng)選的概率為()A. B. C. D.10.在中,角A,B,C所對(duì)的邊分別為a,b,c,,,,則等于()A. B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是公差不為0的等差數(shù)列,,且成等比數(shù)列,則的前9項(xiàng)和_______.12.若點(diǎn)到直線的距離是,則實(shí)數(shù)=______.13.已知,函數(shù)的最小值為__________.14.函數(shù)y=sin2x+2sin2x的最小正周期T為_______.15.用數(shù)學(xué)歸納法證明“”,在驗(yàn)證成立時(shí),等號(hào)左邊的式子是______.16.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取________件.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊過點(diǎn).(1)求的值;(2)已知為銳角,,求的值.18.如圖,已知平面,為矩形,分別為的中點(diǎn),.(1)求證:平面;(2)求證:面平面;(3)求點(diǎn)到平面的距離.19.已知,函數(shù),,(1)證明:是奇函數(shù);(2)如果方程只有一個(gè)實(shí)數(shù)解,求a的值.20.如圖,在邊長為2菱形ABCD中,,且對(duì)角線AC與BD交點(diǎn)為O.沿BD將折起,使點(diǎn)A到達(dá)點(diǎn)的位置.(1)若,求證:平面ABCD;(2)若,求三棱錐體積.21.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個(gè)解,求m的取值集合;(3)設(shè),記,是否存在正整數(shù)n,使不得式對(duì)一切均成立?若存在,求出所有n的值,若不存在,說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)題意求得和的長,然后利用正弦定理求得BC,最后利用求得問題答案.【詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【點(diǎn)睛】本題考查了正弦定理在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、C【解析】因?yàn)橹本€:,:,所以或,即是的必要不充分條件.故選C.點(diǎn)睛:本題考查兩條直線平行的判定;由直線的一般式判定兩直線平行或垂直時(shí),若將一般式化成斜截式,往往需要討論斜率是否存在,為了避免討論,記住以下結(jié)論:已知直線,.則或;.3、D【解析】
由三角函數(shù)圖像可得,,再結(jié)合三角函數(shù)圖像的性質(zhì)逐一判斷即可得解.【詳解】解:由函數(shù)的部分圖象可得,,即,則,又函數(shù)圖像過點(diǎn),則,即,又,即,即,則對(duì)于選項(xiàng)A,顯然錯(cuò)誤;對(duì)于選項(xiàng)B,函數(shù)的圖像關(guān)于直線對(duì)稱,即B錯(cuò)誤;對(duì)于選項(xiàng)C,函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,即C錯(cuò)誤;對(duì)于選項(xiàng)D,函數(shù)的增區(qū)間為,函數(shù)的增區(qū)間為,又,,即D正確,故選:D.【點(diǎn)睛】本題考查了利用三角函數(shù)圖像求函數(shù)解析式,重點(diǎn)考查了三角函數(shù)圖像的性質(zhì),屬中檔題.4、D【解析】試題分析:由題意得,可采用驗(yàn)證法,分別令,即可作出選擇,只有滿足題意,故選D.考點(diǎn):歸納數(shù)列的通項(xiàng)公式.5、B【解析】
直接利用函數(shù)圖象平移規(guī)律得解.【詳解】函數(shù)y=sin2x-π可得函數(shù)y=sin整理得:y=故選:B【點(diǎn)睛】本題主要考查了函數(shù)圖象平移規(guī)律,屬于基礎(chǔ)題。6、C【解析】
利用同角三角函數(shù)的基本關(guān)系求出與,然后利用兩角差的余弦公式求出值.【詳解】,,則,,則,所以,,因此,,故選C.【點(diǎn)睛】本題考查利用兩角和的余弦公式求值,解決這類求值問題需要注意以下兩點(diǎn):①利用同角三角平方關(guān)系求值時(shí),要求對(duì)象角的范圍,確定所求值的正負(fù);②利用已知角來配湊未知角,然后利用合適的公式求解.7、D【解析】
利用余弦函數(shù)的性質(zhì)對(duì)A、B、C三個(gè)選項(xiàng)逐一判斷,再利用平移“左加右減”及誘導(dǎo)公式得出,進(jìn)而得出答案.【詳解】由題意,函數(shù)其最小正周期為,故選項(xiàng)A正確;函數(shù)在上為減函數(shù),故選項(xiàng)B正確;函數(shù)為偶函數(shù),關(guān)于軸對(duì)稱,故選項(xiàng)C正確把函數(shù)的圖象向左平移個(gè)單位長度可得,所以選項(xiàng)D不正確.故答案為D【點(diǎn)睛】本題主要考查了余弦函數(shù)的性質(zhì),以及誘導(dǎo)公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)題意畫出三棱錐的圖形,將其放入一個(gè)長方體中,容易知道三棱錐的外接球半徑,利用球的表面積公式求解即可.【詳解】根據(jù)題意畫出三棱錐如圖所示,把三棱錐放入一個(gè)長方體中,三棱錐的外接球即這個(gè)長方體的外接球,長方體的外接球半徑等于體對(duì)角線的一半,所以三棱錐的外接球半徑,三棱錐的外接球的表面積.故選:B【點(diǎn)睛】本題主要考查三棱錐的外接球問題,對(duì)于三棱錐三條棱有兩兩垂直的情況,可以考慮將其放入一個(gè)長方體中求解外接球半徑,屬于基礎(chǔ)題.9、B【解析】
記三名男生為,兩名女生為,分別列舉出基本事件,得出基本事件總數(shù)和恰有1名女生當(dāng)選包含的基本事件個(gè)數(shù),即可得解.【詳解】記三名男生為,兩名女生為,任選2名所有可能情況為,共10種,恰有一名女生的情況為,共6種,所以恰有1名女生當(dāng)選的概率為.故選:B【點(diǎn)睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于準(zhǔn)確計(jì)算出基本事件總數(shù),和某一事件包含的基本事件個(gè)數(shù).10、D【解析】
根據(jù)題意,由正弦定理得,再把,,代入求解.【詳解】由正弦定理,得,所以.故選:D【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、117【解析】
由成等比數(shù)列求出公差,由前項(xiàng)公式求和.【詳解】設(shè)數(shù)列是公差為,則,由成等比數(shù)列得,解得,∴.故答案為:117.【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和公式,考查等比數(shù)列的性質(zhì).解題關(guān)鍵是求出數(shù)列的公差.12、或1【解析】
由點(diǎn)到直線的距離公式進(jìn)行解答,即可求出實(shí)數(shù)a的值.【詳解】點(diǎn)(1,a)到直線x﹣y+1=0的距離是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴實(shí)數(shù)a的值為﹣1或1.故答案為:﹣1或1.【點(diǎn)睛】本題考查了點(diǎn)到直線的距離公式的應(yīng)用問題,解題時(shí)應(yīng)熟記點(diǎn)到直線的距離公式,是基礎(chǔ)題.13、5【解析】
變形后利用基本不等式可得最小值.【詳解】∵,∴4x-5>0,∴當(dāng)且僅當(dāng)時(shí),取等號(hào),即時(shí),有最小值5【點(diǎn)睛】本題考查利用基本不等式求最值,湊出可利用基本不等式的形式是解決問題的關(guān)鍵,使用基本不等式時(shí)要注意“一正二定三相等”的法則.14、【解析】考點(diǎn):此題主要考查三角函數(shù)的概念、化簡、性質(zhì),考查運(yùn)算能力.15、【解析】
根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【詳解】因?yàn)樽筮叺氖阶邮菑拈_始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【點(diǎn)睛】項(xiàng)數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯(cuò)點(diǎn),要使問題順利得到解決,關(guān)鍵是注意兩點(diǎn):一是首尾兩項(xiàng)的變化規(guī)律;二是相鄰兩項(xiàng)之間的變化規(guī)律.16、1【解析】應(yīng)從丙種型號(hào)的產(chǎn)品中抽取件,故答案為1.點(diǎn)睛:在分層抽樣的過程中,為了保證每個(gè)個(gè)體被抽到的可能性是相同的,這就要求各層所抽取的個(gè)體數(shù)與該層所包含的個(gè)體數(shù)之比等于樣本容量與總體的個(gè)體數(shù)之比,即ni∶Ni=n∶N.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用三角函數(shù)的定義可求出,再根據(jù)二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函數(shù)的基本關(guān)系可得,由,利用兩角差的正切公式即可求解.【詳解】解:(1)依題意得,,,所以.(2)由(1)得,,故.因?yàn)?,,,所以,又因?yàn)?,所以?所以,所以.【點(diǎn)睛】本小題主要考查同角三角函數(shù)關(guān)系、三角恒等變換等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查化歸與轉(zhuǎn)化思想等.18、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;(3)依據(jù)等積法,即可求出點(diǎn)到平面的距離.【詳解】證明:(1)取中點(diǎn)為,連接分別為的中點(diǎn),是平行四邊形,平面,平面,∴平面證明:(2)因?yàn)槠矫妫?,?面PAD,而面,所以,由,為的終點(diǎn),所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,則點(diǎn)到平面的距離為(也可構(gòu)造三棱錐)【點(diǎn)睛】本題主要考查線面平行、面面垂直的判定定理以及等積法求點(diǎn)到面的距離,意在考查學(xué)生的直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算能力.19、(1)證明見解析(1)1【解析】
(1)運(yùn)用函數(shù)的奇偶性的定義即可得證(1)由題意可得有且只有兩個(gè)相等的實(shí)根,可得判別式為0,解方程可得所求值.【詳解】(1)證明:由函數(shù),,可得定義域?yàn)?,且,可得為奇函?shù);(1)方程只有一個(gè)實(shí)數(shù)解,即為,即△,解得舍去),則的值為1.【點(diǎn)睛】本題考查函數(shù)的奇偶性的判斷和二次方程有解的條件,考查方程思想和定義法,屬于基礎(chǔ)題.20、(1)見解析(2)【解析】
(1)證明與即可.(2)法一:證明平面,再過點(diǎn)做垂足為,證明為三棱錐的高再求解即可.法二:通過進(jìn)行轉(zhuǎn)化求解即可.法三:通過進(jìn)行轉(zhuǎn)化求解即可.【詳解】證明:(1)∵在菱形ABCD中,,,AC與BD交于點(diǎn)O.以BD為折痕,將折起,使點(diǎn)A到達(dá)點(diǎn)的位置,∴,又,,∴,∴,∵,∴平面ABCD(2)(法一):∵,,取的中點(diǎn),則且,因?yàn)榍?,所以平面,過點(diǎn)做垂足為,則平面BCD,又∴,解得,∴三棱錐體積.(法二):因?yàn)?,取AC中點(diǎn)E,,,,又(法三)因?yàn)榍?,所以平面,,所以.【點(diǎn)睛】本題主要考查了線面垂直的證明與錐體體積的求解方法等.需要根據(jù)題意找到合適的底面與高,或者利用割補(bǔ)法求解體積.屬于中檔題.21、(1);(2)m的取值集合或}(3)存在,【解析】
(1)利用奇函數(shù)的性質(zhì)得到關(guān)于實(shí)數(shù)k的方程,解方程即可,注意驗(yàn)證所得的結(jié)果;(2)結(jié)合函數(shù)的單調(diào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廢鋼設(shè)備出租合同范例
- 2025醫(yī)院保潔勞務(wù)合同范本
- 廣西路橋砂石供應(yīng)合同范例
- 售后合同范例易懂
- 醫(yī)療耗材維修合同范例
- 深圳借貸合同范例
- 紙張購貨合同范例
- 應(yīng)收賬合同范例
- 銅仁幼兒師范高等專科學(xué)?!毒W(wǎng)絡(luò)場景應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 銅陵職業(yè)技術(shù)學(xué)院《實(shí)驗(yàn)化學(xué)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 北京開放大學(xué)《自動(dòng)控制技術(shù)及應(yīng)用》終結(jié)性考試復(fù)習(xí)題庫(附答案)
- 高中高一級(jí)部拔河比賽活動(dòng)實(shí)施方案
- 每日食品安全檢查記錄
- 航空機(jī)務(wù)專業(yè)職業(yè)生涯規(guī)劃書
- 八年級(jí)英語上學(xué)期期末考試(深圳卷)-2023-2024學(xué)年八年級(jí)英語上冊單元重難點(diǎn)易錯(cuò)題精練(牛津深圳版)
- 項(xiàng)目成本節(jié)約措施總結(jié)報(bào)告
- 迎元旦趣味活動(dòng)及知識(shí)競賽試題及答案
- SH/T 3543-2007 石油化工建設(shè)工程項(xiàng)目施工過程技術(shù)文件規(guī)定
- 減鹽控油控制體重規(guī)章制度
- 建筑之歌課件PPT
- (完整版)員工流失文獻(xiàn)綜述
評(píng)論
0/150
提交評(píng)論