湖北省宜昌高新區(qū)七校聯(lián)考2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第1頁
湖北省宜昌高新區(qū)七校聯(lián)考2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第2頁
湖北省宜昌高新區(qū)七校聯(lián)考2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第3頁
湖北省宜昌高新區(qū)七校聯(lián)考2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第4頁
湖北省宜昌高新區(qū)七校聯(lián)考2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省宜昌高新區(qū)七校聯(lián)考2023-2024學(xué)年中考沖刺卷數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣62.在平面直角坐標(biāo)系xOy中,將點N(–1,–2)繞點O旋轉(zhuǎn)180°,得到的對應(yīng)點的坐標(biāo)是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)3.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.4.在一次中學(xué)生田徑運動會上,參加跳遠(yuǎn)的名運動員的成績?nèi)缦卤硭?成績(米)人數(shù)則這名運動員成績的中位數(shù)、眾數(shù)分別是()A. B. C., D.5.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個數(shù)是()A.4 B.3 C.2 D.16.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm7.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-78.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°9.我國作家莫言獲得諾貝爾文學(xué)獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達(dá)到2100000冊.把2100000用科學(xué)記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×10610.若二次函數(shù)y=ax2+bx+c的x與y的部分對應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.12.如圖,在ABC中,AB=AC=6,∠BAC=90°,點D、E為BC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____.13.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.14.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.15.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.16.若反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個交點為(m,﹣4),則這個反比例函數(shù)的表達(dá)式為_____.17.將代入函數(shù)中,所得函數(shù)值記為,又將代入函數(shù)中,所得的函數(shù)值記為,再將代入函數(shù)中,所得函數(shù)值記為…,繼續(xù)下去.________;________;________;________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;(2)觀察圖象:當(dāng)時,比較.19.(5分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)20.(8分)計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.21.(10分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當(dāng)線段AM最短時,求重疊部分的面積.22.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=1.設(shè)點A的坐標(biāo)為(4,4)則點C的坐標(biāo)為;若點D的坐標(biāo)為(4,n).①求反比例函數(shù)y=的表達(dá)式;②求經(jīng)過C,D兩點的直線所對應(yīng)的函數(shù)解析式;在(2)的條件下,設(shè)點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.23.(12分)解方程:.24.(14分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

分別根據(jù)二次根式的定義,乘方的意義,負(fù)指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負(fù)指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關(guān)鍵.2、A【解析】

根據(jù)點N(–1,–2)繞點O旋轉(zhuǎn)180°,所得到的對應(yīng)點與點N關(guān)于原點中心對稱求解即可.【詳解】∵將點N(–1,–2)繞點O旋轉(zhuǎn)180°,∴得到的對應(yīng)點與點N關(guān)于原點中心對稱,∵點N(–1,–2),∴得到的對應(yīng)點的坐標(biāo)是(1,2).故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到的對應(yīng)點與點N關(guān)于原點中心對稱是解答本題的關(guān)鍵.3、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.4、D【解析】

根據(jù)中位數(shù)、眾數(shù)的定義即可解決問題.【詳解】解:這些運動員成績的中位數(shù)、眾數(shù)分別是4.70,4.1.故選:D.【點睛】本題考查中位數(shù)、眾數(shù)的定義,解題的關(guān)鍵是記住中位數(shù)、眾數(shù)的定義,屬于中考基礎(chǔ)題.5、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進(jìn)行判斷;根據(jù)拋物線與x軸的交點個數(shù)得到b2﹣4ac>0,加上a<0,則可對②進(jìn)行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進(jìn)行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對④進(jìn)行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.6、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.7、C【解析】

根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行求解是解題的關(guān)鍵.8、A【解析】

根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質(zhì)、圓周角定理,主要考查學(xué)生的推理能力.9、D【解析】2100000=2.1×106.點睛:對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).10、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標(biāo).詳解:當(dāng)或時,,當(dāng)時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標(biāo)為,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個陰影部分的面積之和,然后根據(jù)三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【詳解】解:根據(jù)題意可知,軸,設(shè)圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數(shù)綜合題.12、或【解析】

過點A作AG⊥BC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設(shè)BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關(guān)于x的方程,從而求得DG的長,繼而可求得AD的長.【詳解】如圖所示,過點A作AG⊥BC,垂足為G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,設(shè)BD=x,則EC=12-DE-BD=12-5-x=7-x,由翻折的性質(zhì)可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,當(dāng)BD=3時,DG=3,AD=,當(dāng)BD=4時,DG=2,AD=,∴AD的長為或,故答案為:或.【點睛】本題考查了翻折的性質(zhì)、勾股定理的應(yīng)用、等腰直角三角形的性質(zhì),正確添加輔助線,靈活運用勾股定理是解題的關(guān)鍵.13、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,屬于中考常見題型,求出OP的長是解題關(guān)鍵.14、2【解析】

把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點的坐標(biāo)滿足的關(guān)系式.15、2【解析】

過P作關(guān)于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據(jù)對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據(jù)特殊三角形函數(shù)值求得,,再根據(jù)線段相加勾股定理即可求解.【詳解】過P作關(guān)于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質(zhì),菱形性質(zhì),內(nèi)角和定理和勾股定理,熟悉掌握定理是關(guān)鍵.16、y=﹣.【解析】

把交點坐標(biāo)代入兩個解析式組成方程組,解方程組求得k,即可求得反比例函數(shù)的解析式.【詳解】解:∵反比例函數(shù)y=的圖象與一次函數(shù)y=x+k的圖象有一個交點為(m,﹣4),∴,解得k=﹣5,∴反比例函數(shù)的表達(dá)式為y=﹣,故答案為y=﹣.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)圖象上點的坐標(biāo)特征得出方程組是解題的關(guān)鍵.17、22【解析】

根據(jù)數(shù)量關(guān)系分別求出y1,y2,y3,y4,…,不難發(fā)現(xiàn),每3次計算為一個循環(huán)組依次循環(huán),用2006除以3,根據(jù)商和余數(shù)的情況確定y2006的值即可.【詳解】y1=,

y2=?=2,

y3=?=,

y4=?=,

…,

∴每3次計算為一個循環(huán)組依次循環(huán),

∵2006÷3=668余2,

∴y2006為第669循環(huán)組的第2次計算,與y2的值相同,

∴y2006=2,

故答案為;2;;2.【點睛】本題考查反比例函數(shù)的定義,解題的關(guān)鍵是多運算找規(guī)律.三、解答題(共7小題,滿分69分)18、(1);(2)【解析】

(1)由一次函數(shù)的解析式可得出D點坐標(biāo),從而得出OD長度,再由△ODC與△BAC相似及AB與BC的長度得出C、B、A的坐標(biāo),進(jìn)而算出一次函數(shù)與反比例函數(shù)的解析式;

(2)以A點為分界點,直接觀察函數(shù)圖象的高低即可知道答案.【詳解】解:(1)對于一次函數(shù)y=kx-2,令x=0,則y=-2,即D(0,-2),

∴OD=2,

∵AB⊥x軸于B,

∴,

∵AB=1,BC=2,

∴OC=4,OB=6,

∴C(4,0),A(6,1)

將C點坐標(biāo)代入y=kx-2得4k-2=0,

∴k=,

∴一次函數(shù)解析式為y=x-2;

將A點坐標(biāo)代入反比例函數(shù)解析式得m=6,

∴反比例函數(shù)解析式為y=;

(2)由函數(shù)圖象可知:

當(dāng)0<x<6時,y1<y2;

當(dāng)x=6時,y1=y2;

當(dāng)x>6時,y1>y2;【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題.熟悉函數(shù)圖象上點的坐標(biāo)特征和待定系數(shù)法解函數(shù)解析式的方法是解答本題的關(guān)鍵,同時注意對數(shù)形結(jié)合思想的認(rèn)識和掌握.19、不需要改道行駛【解析】

解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應(yīng)用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.20、【解析】

直接利用絕對值的性質(zhì)以及特殊角的三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的性質(zhì)化簡,進(jìn)而求出答案.【詳解】原式.【點睛】考核知識點:三角函數(shù)混合運算.正確計算是關(guān)鍵.21、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當(dāng)AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當(dāng)AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當(dāng)x=3時,AM最短為,又∵當(dāng)BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.22、(1)C(2,2);(2)①反比例函數(shù)解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解析】

(1)利用中點坐標(biāo)公式即可得出結(jié)論;

(2)①先確定出點A坐標(biāo),進(jìn)而得出點C坐標(biāo),將點C,D坐標(biāo)代入反比例函數(shù)中即可得出結(jié)論;

②由n=1,求出點C,D坐標(biāo),利用待定系數(shù)法即可得出結(jié)論;

(1)設(shè)出點E坐標(biāo),進(jìn)而表示出點F坐標(biāo),即可建立面積與m的函數(shù)關(guān)系式即可得出結(jié)論.【詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論