山東省臨沂市第一中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
山東省臨沂市第一中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
山東省臨沂市第一中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
山東省臨沂市第一中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
山東省臨沂市第一中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省臨沂市第一中學(xué)2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線與圓有公共點,則實數(shù)的取值范圍是()A. B. C. D.2.以點和為直徑兩端點的圓的方程是()A. B.C. D.3.某單位共有老、中、青職工430人,其中有青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()A.9 B.18 C.27 D.364.已知四棱錐的底面是正方形,側(cè)棱長均相等,E是線段AB上的點(不含端點).設(shè)SE與BC所成的角為,SE與平面ABCD所成的角為β,二面角S-AB-C的平面角為,則()A. B. C. D.5.在直三棱柱中,底面為直角三角形,,,是上一動點,則的最小值是()A. B. C. D.6.如圖,給出的是的值的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A. B. C. D.7.設(shè)為正數(shù),為的等差中項,為的等比中項,則與的大小關(guān)為()A. B. C. D.8.中,,則()A. B. C.或 D.9.直線的傾斜角為()A. B. C. D.10.定義運算,設(shè),若,,,則的值域為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,是第三象限角,則.12.對于任意實數(shù)x,不等式恒成立,則實數(shù)a的取值范圍是______13.我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中獨立提出了一種求三角形面積的方法——“三斜求積術(shù)”,即的,其中分別為內(nèi)角的對邊.若,且則的面積的最大值為____.14.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.15.在某校舉行的歌手大賽中,7位評委為某同學(xué)打出的分數(shù)如莖葉圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為______.16.中,,則A的取值范圍為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列前n項和,點在函數(shù)的圖象上.(1)求的通項公式;(2)設(shè)數(shù)列的前n項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)a的取值范圍.18.在等差數(shù)列{an}中,2a9=a12+13,a3=7,其前n項和為Sn.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{}的前n項和Tn,并證明Tn<.19.的內(nèi)角所對的邊分別為,且.(1)求角;(2)若,且的面積為,求的值.20.已知數(shù)列an的前n項和為S(1)求數(shù)列an(2)設(shè)bn=an·log221.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意得圓心為,半徑為.圓心到直線的距離為,由直線與圓有公共點可得,即,解得.∴實數(shù)a取值范圍是.選C.2、A【解析】

可根據(jù)已知點直接求圓心和半徑.【詳解】點和的中點是圓心,圓心坐標(biāo)是,點和間的距離是直徑,,即,圓的方程是.故選A.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程的求法,屬于基礎(chǔ)題型.3、B【解析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個數(shù),算出每個個體被抽到的概率,用概率乘以老年職工的個數(shù),得到結(jié)果.設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,∵x+2x+160=430,∴x=90,即由比例可得該單位老年職工共有90人,∵在抽取的樣本中有青年職工32人,∴每個個體被抽到的概率是用分層抽樣的比例應(yīng)抽取×90=18人.故選B.考點:分層抽樣點評:本題是一個分層抽樣問題,容易出錯的是不理解分層抽樣的含義或與其它混淆.抽樣方法是數(shù)學(xué)中的一個小知識點,但一般不難,故也是一個重要的得分點,不容錯過4、C【解析】

根據(jù)題意,分別求出SE與BC所成的角、SE與平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱錐的線段大小關(guān)系即可比較大小.【詳解】四棱錐的底面是正方形,側(cè)棱長均相等,所以四棱錐為正四棱錐,(1)過作,交于,過底面中心作交于,連接,取中點,連接,如下圖(1)所示:則;(2)連接如下圖(2)所示,則;(3)連接,則,如下圖(3)所示:因為所以,而均為銳角,所以故選:C.【點睛】本題考查了異面直線夾角、直線與平面夾角、平面與平面夾角的求法,屬于中檔題.5、B【解析】

連,沿將展開與在同一個平面內(nèi),不難看出的最小值是的連線,由余弦定理即可求解.【詳解】解:連,沿將展開與在同一個平面內(nèi),如圖所示,

連,則的長度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故選B.【點睛】本題考查棱柱的結(jié)構(gòu)特征,余弦定理的應(yīng)用,是中檔題.6、B【解析】試題分析:由題意得,執(zhí)行上式的循環(huán)結(jié)構(gòu),第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;,第次循環(huán):,此時終止循環(huán),輸出結(jié)果,所以判斷框中,添加,故選B.考點:程序框圖.7、B【解析】

由等差中項及等比中項的運算可得,,再結(jié)合即可得解.【詳解】解:因為為正數(shù),為的等差中項,為的等比中項,則,,又,當(dāng)且僅當(dāng)時取等號,又,所以,故選:B.【點睛】本題考查了等差中項及等比中項的運算,重點考查了重要不等式的應(yīng)用,屬基礎(chǔ)題.8、A【解析】

根據(jù)正弦定理,可得,然后根據(jù)大邊對大角,可得結(jié)果..【詳解】由,所以由,所以故,所以故選:A【點睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.9、D【解析】

求出斜率,根據(jù)斜率與傾斜角關(guān)系,即可求解.【詳解】化為,直線的斜率為,傾斜角為.故選:D.【點睛】本題考查直線方程一般式化為斜截式,求直線的斜率、傾斜角,屬于基礎(chǔ)題.10、C【解析】

由題意,由于與都是周期函數(shù),且最小正周期都是,故只須在一個周期上考慮函數(shù)的值域即可,分別畫出與的圖象,如圖所示,觀察圖象可得:的值域為,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】試題分析:根據(jù)同角三角函數(shù)的基本關(guān)系知,,化簡整理得①,又因為②,聯(lián)立方程①②即可解得:,,又因為是第三象限角,所以,故.考點:同角三角函數(shù)的基本關(guān)系.12、【解析】

對a分類討論,利用判別式,即可得到結(jié)論.【詳解】(1)a﹣2=0,即a=2時,﹣4<0,恒成立;(2)a﹣2≠0時,,解得﹣2<a<2,∴﹣2<a≤2故答案為:.【點睛】對于二次函數(shù)的研究一般從以幾個方面研究:一是,開口;二是,對稱軸,主要討論對稱軸與區(qū)間的位置關(guān)系;三是,判別式,決定于x軸的交點個數(shù);四是,區(qū)間端點值.13、【解析】

由已知利用正弦定理可求,代入“三斜求積”公式即可求得答案.【詳解】因為,所以整理可得,由正弦定理得因為,所以所以當(dāng)時,的面積的最大值為【點睛】本題用到的知識點有同角三角函數(shù)的基本關(guān)系式,兩角和的正弦公式,正弦定理等,考查學(xué)生分析問題的能力和計算整理能力.14、【解析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構(gòu)成數(shù)列,不妨令,則,且,則此時必為整數(shù);當(dāng)時,,不符合;當(dāng)時,,符合,此時公比;當(dāng)時,,不符合;當(dāng)時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準(zhǔn)確分析.15、2【解析】

去掉分數(shù)后剩余數(shù)據(jù)為22,23,24,25,26,先計算平均值,再計算方差.【詳解】去掉分數(shù)后剩余數(shù)據(jù)為22,23,24,25,26平均值為:方差為:故答案為2【點睛】本題考查了方差的計算,意在考查學(xué)生的計算能力.16、【解析】

由正弦定理將sin2A≤sin2B+sin2C-sinBsinC變?yōu)?,然后用余弦定理推論可求,進而根據(jù)余弦函數(shù)的圖像性質(zhì)可求得角A的取值范圍.【詳解】因為sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因為,所以.【點睛】在三角形中,已知邊和角或邊、角關(guān)系,求角或邊時,注意正弦、余弦定理的運用.條件只有角的正弦時,可用正弦定理的推論,將角化為邊.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)將點的坐標(biāo)代入函數(shù)的方程得到.利用,可求得數(shù)列的通項公式為.(2)利用裂項求和法求得.為遞增的數(shù)列,當(dāng)時有最小值為,所以,解得.試題解析:(1)點在函數(shù)的圖象上,.①當(dāng)時,,②①-②得.當(dāng)時,,符合上式..(2)由(1)得,.,數(shù)列單調(diào)遞增,中的最小項為.要使不等式對任意正整數(shù)恒成立,只要,即.解得,即實數(shù)的取值范圍為.點睛:本題主要考查函數(shù)與數(shù)列,考查已知數(shù)列前項和,求數(shù)列通項的方法,即用公式.要注意驗證當(dāng)時等號是否成立.考查了裂項求和法,當(dāng)數(shù)列通項是分數(shù)的形式,并且分母是兩個等差數(shù)列的乘積的時候,可考慮用裂項求和法求和.還考查了數(shù)列的單調(diào)性和恒成立問題的解法.18、(1)(2)見解析【解析】

(1)等差數(shù)列{an}的公差設(shè)為d,運用等差數(shù)列的通項公式,解方程可得首項和公差,進而得到所求通項公式;(2)運用等差數(shù)列的求和公式,求得(),再由數(shù)列的裂項相消求和可得Tn,再由不等式的性質(zhì)即可得證.【詳解】(1)等差數(shù)列{an}的公差設(shè)為d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,則an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n項和Tn(1)(1)().【點睛】本題考查等差數(shù)列的通項公式和求和公式的運用,以及數(shù)列的裂項相消求和,考查方程思想和運算能力,屬于中檔題.19、(1)(2)【解析】

(1)對等式,運用正弦定理實現(xiàn)邊角轉(zhuǎn)化,再利用同角三角函數(shù)關(guān)系中的商關(guān)系,可求出角的正切值,最后根據(jù)角的取值范圍,求出角;(2)由三角形面積公式,可以求出的值,最后利用余弦定理,求出的值.【詳解】(1)∵,∴,∵,∴,∴,∴在中;(2)∵的面積為,∴,∴,由余弦定理,有,∴.【點睛】本題考查正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運算能力.20、(1)an=【解析】

(1)利用an=S(2)利用錯位相減法可求Tn【詳解】(1)因為Sn=2整理得到an=4,n=1(2)因為bn所以Tn2T所以-Tn【點睛】數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.21、(1);(2).【解析】

(1)由遞推公式,再遞推一步,得,兩式相減化簡得,可以判斷數(shù)列是等差數(shù)列,進而可以求出等差數(shù)列的通項公式;(2)根據(jù)(1)和對數(shù)的運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論