江蘇省鎮(zhèn)江市重點(diǎn)名校2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁
江蘇省鎮(zhèn)江市重點(diǎn)名校2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁
江蘇省鎮(zhèn)江市重點(diǎn)名校2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁
江蘇省鎮(zhèn)江市重點(diǎn)名校2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁
江蘇省鎮(zhèn)江市重點(diǎn)名校2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省鎮(zhèn)江市重點(diǎn)名校2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則2.函數(shù)的圖像的一條對(duì)稱軸是()A. B. C. D.3.《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積為:V=×(底面的圓周長(zhǎng)的平方×高).則由此可推得圓周率的取值為()A.3 B.3.14 C.3.2 D.3.34.設(shè),則下列不等式恒成立的是A. B.C. D.5.在中任取一實(shí)數(shù)作為x,則使得不等式成立的概率為()A. B. C. D.6.已知是等差數(shù)列的前項(xiàng)和,.若對(duì)恒成立,則正整數(shù)構(gòu)成的集合是()A. B. C. D.7.設(shè),若關(guān)于的不等式在區(qū)間上有解,則()A. B. C. D.8.已知兩條不重合的直線和,兩個(gè)不重合的平面和,下列四個(gè)說法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號(hào)為()A.②④ B.③④ C.④ D.①③9.對(duì)一切,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.10.已知向量,且,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內(nèi)角的對(duì)邊分別為,若的周長(zhǎng)為,面積為,,則__________.12.已知向量、滿足:,,,則_________.13.已知,,若,則______14.在中,角所對(duì)的邊分別為,,則____15.若無窮數(shù)列的所有項(xiàng)都是正數(shù),且滿足,則______.16.已知函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,記在區(qū)間的最大值為,且在()上單調(diào)遞增,則實(shí)數(shù)的最小值是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,a=7,b=8,.(1)求邊AB的長(zhǎng);(2)求△ABC的面積.18.已知數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,設(shè)數(shù)列的前n項(xiàng)和為,證明.19.已知數(shù)列滿足且,設(shè),.(1)求;(2)求的通項(xiàng)公式;(3)求.20.計(jì)算:(1)(2)(3)21.近期,某公交公司分別推出支付寶和徽信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表l所示:表1根據(jù)以上數(shù)據(jù),繪制了如右圖所示的散點(diǎn)圖.(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),y=a+bx與(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;參考數(shù)據(jù):其中υ參考公式:對(duì)于一組數(shù)據(jù)u1,υ1,

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點(diǎn):空間點(diǎn)線面位置關(guān)系.2、C【解析】對(duì)稱軸穿過曲線的最高點(diǎn)或最低點(diǎn),把代入后得到,因而對(duì)稱軸為,選.3、A【解析】試題分析:由題意知圓柱體積×(底面的圓周長(zhǎng)的平方×高),化簡(jiǎn)得:,故選A.考點(diǎn):圓柱的體積公式.4、C【解析】

利用不等式的性質(zhì),合理推理,即可求解,得到答案.【詳解】因?yàn)?,所以,所以A項(xiàng)不正確;因?yàn)?,所以,,則,所以B不正確;因?yàn)?,則,所以,又因?yàn)?,則,所以等號(hào)不成立,所以C正確;由,所以,所以D錯(cuò)誤.【點(diǎn)睛】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的性質(zhì),合理運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解析】

先求解不等式,再利用長(zhǎng)度型的幾何概型概率公式求解即可【詳解】由題,因?yàn)?解得,則,故選:C【點(diǎn)睛】本題考查長(zhǎng)度型的幾何概型,考查解對(duì)數(shù)不等式6、A【解析】

先分析出,即得k的值.【詳解】因?yàn)橐驗(yàn)樗?所以,所以正整數(shù)構(gòu)成的集合是.故選A【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的最小值的求法,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.7、D【解析】

根據(jù)題意得不等式對(duì)應(yīng)的二次函數(shù)開口向上,分別討論三種情況即可.【詳解】由題意得:當(dāng)當(dāng)當(dāng)綜上所述:,選D.【點(diǎn)睛】本題主要考查了含參一元二次不等式中參數(shù)的取值范圍.解這類題通常分三種情況:.有時(shí)還需要結(jié)合韋達(dá)定理進(jìn)行解決.8、C【解析】

根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關(guān)結(jié)論,逐項(xiàng)判斷出各項(xiàng)的真假,即可求出.【詳解】對(duì)①,若,,,則或和相交,所以①錯(cuò)誤;對(duì)②,若,,則或,所以②錯(cuò)誤;對(duì)③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯(cuò)誤;對(duì)④,根據(jù)面面垂直的性質(zhì)定理可知,④正確.故選:C.【點(diǎn)睛】本題主要考查有關(guān)線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關(guān)結(jié)論的理解和應(yīng)用,屬于基礎(chǔ)題.9、B【解析】

先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【詳解】解:對(duì)一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【點(diǎn)睛】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10、B【解析】

由向量平行可構(gòu)造方程求得結(jié)果.【詳解】,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行求解參數(shù)值的問題,關(guān)鍵是明確兩向量平行可得.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點(diǎn)睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來,然后確定轉(zhuǎn)化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化;第三步:求結(jié)果.12、.【解析】

將等式兩邊平方得出的值,再利用結(jié)合平面向量的數(shù)量積運(yùn)算律可得出結(jié)果.【詳解】,,,因此,,故答案為.【點(diǎn)睛】本題考查利用平面向量數(shù)量積來計(jì)算平面向量的模,在計(jì)算時(shí),一般將平面向量的模平方,利用平面向量數(shù)量積的運(yùn)算律來進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于中等題.13、【解析】

根據(jù)向量垂直的坐標(biāo)表示列出等式,求出,再利用二倍角公式、平方關(guān)系即可求出.【詳解】由得,,解得,.【點(diǎn)睛】本題主要考查了向量垂直的坐標(biāo)表示以及二倍角公式、平方關(guān)系的應(yīng)用.14、【解析】

利用正弦定理將邊角關(guān)系式中的邊都化成角,再結(jié)合兩角和差公式進(jìn)行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結(jié)果:【點(diǎn)睛】本題考查李用正弦定理進(jìn)行邊角關(guān)系式的化簡(jiǎn)問題,屬于常規(guī)題.15、【解析】

先由作差法求出數(shù)列的通項(xiàng)公式為,即可計(jì)算出,然后利用常用數(shù)列的極限即可計(jì)算出的值.【詳解】當(dāng)時(shí),,可得;當(dāng)時(shí),由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【點(diǎn)睛】本題考查利用作差法求數(shù)列通項(xiàng),同時(shí)也考查了數(shù)列極限的計(jì)算,考查計(jì)算能力,屬于中等題.16、【解析】,所以,又,得,所以,且求得,又,得單調(diào)遞增區(qū)間為,由題意,當(dāng)時(shí),。點(diǎn)睛:本題考查三角函數(shù)的化簡(jiǎn)及性質(zhì)應(yīng)用。本題首先考查三角函數(shù)的輔助角公式應(yīng)用,并結(jié)合對(duì)稱中心的性質(zhì),得到函數(shù)解析式。然后考察三角函數(shù)的單調(diào)性,利用整體思想求出單調(diào)區(qū)間,求得答案。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)AB的長(zhǎng)為1.(2)6.【解析】

(1)利用余弦定理解方程,解方程求得的長(zhǎng).(2)根據(jù)的值,求得的值,由三角形面積公式,求得三角形的面積.【詳解】(1)∵a=7,b=8,.∴由余弦定理b2=a2+c2﹣2accosB,可得:64=49+c2﹣2,可得:c2+2c﹣15=0,∴解得:c=1,或﹣5(舍去),可得:AB的長(zhǎng)為1.(2)∵,B∈(0,π),∴sinB,又a=7,c=1,∴S△ABCacsinB6.【點(diǎn)睛】本小題主要考查余弦定理解三角形,考查三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系式,考查運(yùn)算求解能力,屬于基礎(chǔ)題.18、(1);(2)見解析.【解析】【試題分析】(1)借助題設(shè)中的數(shù)列遞推式探求數(shù)列通項(xiàng)之間的關(guān)系,再運(yùn)用等比數(shù)列的定義求得通項(xiàng)公式;(2)依據(jù)(1)的結(jié)論運(yùn)用錯(cuò)位相減法求解,再借助簡(jiǎn)單縮放法推證:(1)當(dāng)時(shí),得,當(dāng)時(shí),得,所以,(2)由(1)得:,又①得②兩式相減得:,故,所以.點(diǎn)睛:解答本題的思路是充分借助題設(shè)條件,先探求數(shù)列的的通項(xiàng)公式,再運(yùn)用錯(cuò)位相減法求解前項(xiàng)和.解答第一問時(shí),先借助題設(shè)中的數(shù)列遞推式探求數(shù)列通項(xiàng)之間的關(guān)系,再運(yùn)用等比數(shù)列的定義求得通項(xiàng)公式;解答第二問時(shí),先依據(jù)(1)中的結(jié)論求得,運(yùn)用錯(cuò)位相減求和法求得,使得問題獲解.19、(1),,,;(1),;(3).【解析】

(1)依次代入計(jì)算,可求得;(1)歸納出,并用數(shù)學(xué)歸納法證明;(3)用裂項(xiàng)相消法求和,然后求極限.【詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學(xué)歸納法證明:1°n=1,n=1時(shí),由(1)知成立,1°假設(shè)n=k(k>1)時(shí),結(jié)論成立,即bk=1k1,則n=k+1時(shí),ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時(shí)結(jié)論成立,∴對(duì)所有正整數(shù)n,bn=1n1.(3)由(1)知n1時(shí),,∴,.【點(diǎn)睛】本題考查用歸納法求數(shù)列的通項(xiàng)公式,考查用裂項(xiàng)相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項(xiàng)公式時(shí),可以根據(jù)已知的遞推關(guān)系求出數(shù)列的前幾項(xiàng),然后歸納出通項(xiàng)公式,并用數(shù)學(xué)歸納法證明,這對(duì)學(xué)生的歸納推理能力有一定的要求,這也就是我們平常所學(xué)的從特殊到一般的推理方法.20、(1);(2);(3).【解析】

利用誘導(dǎo)公式,對(duì)每一道題目進(jìn)行化簡(jiǎn)求值.【詳解】(1)原式.(2)原式.(3)原式.【點(diǎn)睛】在使用誘導(dǎo)公式時(shí),注意“奇變偶不變,符號(hào)看象限”法則的應(yīng)用,即輔助角為的奇數(shù)倍,函數(shù)名要改變;若為的偶數(shù)倍,函數(shù)名不改變.21、(1)y=c?dx【解析】

(1)根據(jù)散點(diǎn)圖判斷,y=c?dx適宜;(2)y=c?dx,兩邊同時(shí)取常用對(duì)數(shù)得:【詳解】(1)根據(jù)散點(diǎn)圖判斷,y=c?dx適宜作為掃碼支付的人數(shù)y關(guān)于活動(dòng)推出天數(shù)(2)∵y=c?dx,兩邊同時(shí)取常用對(duì)數(shù)得:1gy=1g(c?d設(shè)1gy=v,∴v=1gc+1gd?x∵x=4,v∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論