福建省寧德市福安第六中學2025屆高一下數(shù)學期末綜合測試試題含解析_第1頁
福建省寧德市福安第六中學2025屆高一下數(shù)學期末綜合測試試題含解析_第2頁
福建省寧德市福安第六中學2025屆高一下數(shù)學期末綜合測試試題含解析_第3頁
福建省寧德市福安第六中學2025屆高一下數(shù)學期末綜合測試試題含解析_第4頁
福建省寧德市福安第六中學2025屆高一下數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省寧德市福安第六中學2025屆高一下數(shù)學期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.2.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度3.在中,內角,,的對邊分別為,,,若,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.最大角為銳角的等腰三角形 D.最大角為鈍角的等腰三角形4.已知直線l過點且與直線垂直,則l的方程是()A. B.C. D.5.已知的頂點坐標為,,,則邊上的中線的長為()A. B. C. D.6.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線7.如圖所示,向量,則()A. B. C. D.8.已知向量、滿足,且,則為()A. B.6 C.3 D.9.設x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.210.若關于x,y的方程組無解,則()A. B. C.2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.關于函數(shù),下列命題:①若存在,有時,成立;②在區(qū)間上是單調遞增;③函數(shù)的圖象關于點成中心對稱圖象;④將函數(shù)的圖象向左平移個單位后將與的圖象重合.其中正確的命題序號__________12.已知圓錐底面半徑為1,高為,則該圓錐的側面積為_____.13.在中,,且,則.14.已知向量,,若,則__________.15.△ABC中,,,則=_____.16.已知數(shù)列滿足,(),則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在處有一港口,兩艘海輪同時從港口處出發(fā)向正北方向勻速航行,海輪的航行速度為20海里/小時,海輪的航行速度大于海輪.在港口北偏東60°方向上的處有一觀測站,1小時后在處測得與海輪的距離為30海里,且處對兩艘海輪,的視角為30°.(1)求觀測站到港口的距離;(2)求海輪的航行速度.18.設和是兩個等差數(shù)列,記(),其中表示,,這個數(shù)中最大的數(shù).已知為數(shù)列的前項和,,.(1)求數(shù)列的通項公式;(2)若,求,,的值,并求數(shù)列的通項公式;(3)求數(shù)列前項和.19.為了了解高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.(1)求第二小組的頻率;(2)求樣本容量;(3)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?20.如圖,在梯形中,,,,.(1)在中,求的長;(2)若的面積等于,求的長.21.如圖,已知等腰梯形中,是的中點,,將沿著翻折成,使平面平面.(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)在線段上是否存在點P,使得平面,若存在,求出的值;若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】令,,所以函數(shù)在上單調遞減,在上單調遞增,又令,所以有兩個零點,因為,,所以,且當時,,,當時,,,當時,,,選項C滿足條件.故選C.點睛:本題考查函數(shù)的解析式和圖象的關系、利用導數(shù)研究函數(shù)的單調性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調性、最值及特殊點的符號進行驗證,逐一驗證進行排除.2、D【解析】

由圖象求得函數(shù)解析式的參數(shù),再利用誘導公式將異名函數(shù)化為同名函數(shù)根據(jù)圖象間平移方法求解.【詳解】由圖象可知,又,所以,又因為,所以,所以,又因為,又,所以所以又因為故選D.【點睛】本題考查由圖象確定函數(shù)的解析式和正弦函數(shù)和余弦函數(shù)圖象之間的平移,關鍵在于將異名函數(shù)化為同名函數(shù),屬于中檔題.3、D【解析】

先由余弦定理,結合題中條件,求出,再由,求出,進而可得出三角形的形狀.【詳解】因為,所以,,所以.又,所以,則的形狀為最大角為鈍角的等腰三角形.故選D【點睛】本題主要考查三角形的形狀的判定,熟記余弦定理即可,屬于常考題型.4、A【解析】

直線2x–3y+1=0的斜率為則直線l的斜率為所以直線l的方程為故選A5、D【解析】

利用中點坐標公式求得,再利用兩點間距離公式求得結果.【詳解】由,可得中點又本題正確選項:【點睛】本題考查兩點間距離公式的應用,關鍵是能夠利用中點坐標公式求得中點坐標.6、B【解析】試題分析:根據(jù)平面的基本性質及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質及推論知B正確.故選B.考點:平面的基本性質及推論.7、A【解析】

根據(jù)平面向量的加法的幾何意義、平面向量的基本定理、平面向量數(shù)乘運算的性質,結合進行求解即可.【詳解】.故選:A【點睛】本題考查了平面向量基本定理及加法運算的幾何意義,考查了平面向量數(shù)乘運算的性質,屬于基礎題.8、A【解析】

先由可得,即可求得,再對平方處理,進而求解【詳解】因為,所以,則,所以,則,故選:A【點睛】本題考查向量的模,考查向量垂直的數(shù)量積表示,考查運算能力9、C【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當直線y=2x﹣z過A時,直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點評】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是中檔題.10、A【解析】

由題可知直線與平行,再根據(jù)平行公式求解即可.【詳解】由題,直線與平行,故.故選:A【點睛】本題主要考查了二元一次方程組與直線間的位置關系,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】

根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時,成立;正確,對于②、在區(qū)間上是單調遞減;因此錯誤,對于③、,函數(shù)的圖象關于點成中心對稱圖象,成立.對于④、將函數(shù)的圖象向左平移個單位后得到,與的圖象重合錯誤,故答案為①③考點:命題的真假點評:主要是考查了三角函數(shù)的性質的運用,屬于基礎題.12、【解析】

由已知求得母線長,代入圓錐側面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側面積S=πrl=2π.故答案為:2π.【點睛】本題考查圓錐側面積的求法,側面積公式S=πrl.13、【解析】

∵在△ABC中,∠ABC=60°,且AB=5,AC=7,

∴由余弦定理,可得:,

∴整理可得:,解得:BC=8或?3(舍去).考點:1、正弦定理及余弦定理;2、三角形內角和定理及兩角和的余弦公式.14、1【解析】由,得.即.解得.15、【解析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點:正余弦定理16、31【解析】

根據(jù)數(shù)列的首項及遞推公式依次求出、、……即可.【詳解】解:,故答案為:【點睛】本題考查利用遞推公式求出數(shù)列的項,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)海里;(2)速度為海里/小時【解析】

(1)由已知可知,所以在中,運用余弦定理易得OA的長.(2)因為C航行1小時到達C,所以知道OC的長即可,即求BC的長.在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【詳解】(1)因為海倫的速度為20海里/小時,所以1小時后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度為海里/小時【點睛】三角形中一般已知三個條件可求其他條件,用到的工具一般是余弦定理或者正弦定理.18、(1);(2),,,;(3)【解析】

(1)根據(jù)題意,化簡得,運用已知求公式,即可求解通項公式;(2)根據(jù)題意,寫出通項,根據(jù)定義,令,可求解,,的值,再判斷單調遞減,可求數(shù)列的通項公式;(3)由(1)(2)的數(shù)列、的通項公式,代入數(shù)列中,運用錯位相減法求和.【詳解】(1)∵,∴,當時,,化簡得,∴,當時,,,∵,∴,∴是首項為1,公差為2的等差數(shù)列,∴.(2),,,當時,,∴單調遞減,所以.(3)作差,得【點睛】本題考查(1)已知求公式;(2)數(shù)列的單調性;(3)錯位相減法求和;考查計算能力,考查分析問題解決問題的能力,綜合性較強,有一定難度.19、(1);(2);(3)%【解析】

(1)由于每個長方形的面積即為本組的頻率,設第二小組的頻率為4,則解得第二小組的頻率為(2)設樣本容量為,則(3)由(1)和直方圖可知,次數(shù)在110以上的頻率為由此估計全體高一學生的達標率為%20、(1);(2)【解析】

(1)首先利用同角三角函數(shù)的基本關系求出,再利用正弦定理求解即可.(2)求出梯形的高,再利用三角形的面積求解即可.【詳解】解:(1)在梯形中,,,,.可得,由正弦定理可得:.(2)過作,交的延長線于則即梯形的高為,因為的面積等于,,,,【點睛】本題考查正弦定理、余弦定理的應用,三角形面積公式的應用,屬于中檔題.21、(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點P,使得平面,且.【解析】

試題分析:(I)根據(jù)直線與平面垂直的判定定理,需證明垂直平面內的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進而證得平面.(Ⅱ)由(I)可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點P使得PM平行平面內的一條直線即可.由于,故可取線段中點P,中點Q,連結.則,且.由此即可得四邊形是平行四邊形,從而問題得證.試題解析:(I)由題意可知四邊形是平行四邊形,所以,故.又因為,M為AE的中點所以,即又因為,所以四邊形是平行四邊形.所以故.因為平面平面,平面平面,平面所以平面.因為平面,所以.因為,、平面,所以平面.(Ⅱ)以為軸,為軸,為軸建立空間直角坐標系,則,,,.平面的法向量為.設平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論