版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市西南模范中學2024屆高一下數(shù)學期末質量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,為兩個平面,則能斷定∥的條件是()A.內(nèi)有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面2.已知函數(shù),則()A.的最小正周期為,最大值為1 B.的最小正周期為,最大值為C.的最小正周期為,最大值為1 D.的最小正周期為,最大值為3.設是定義在上的偶函數(shù),若當時,,則()A. B. C. D.4.設,是兩條不同的直線,,是兩個不同的平面,是下列命題正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則5.已知直線:,:,若:;,則是的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.設、滿足約束條件,則的最大值為()A. B.C. D.7.方程的解所在的區(qū)間為()A. B.C. D.8.如圖,網(wǎng)格紙的小正方形的邊長是,在其上用粗實線和粗虛線畫出了某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.9.已知表示三條不同的直線,表示兩個不同的平面,下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則10.若直線與直線平行,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值為________.12.在等差數(shù)列中,若,則______.13.不共線的三個平面向量,,兩兩所成的角相等,且,,則__________.14.已知圓的圓心在直線上,半徑為,若圓上存在點,它到定點的距離與到原點的距離之比為,則圓心的縱坐標的取值范圍是__________.15.假設我國國民生產(chǎn)總值經(jīng)過10年增長了1倍,且在這10年期間我國國民生產(chǎn)總值每年的年增長率均為常數(shù),則______.(精確到)(參考數(shù)據(jù))16.若,則______(用表示).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四面體中,,,為的中點.(1)證明:;(2)已知是邊長為2正三角形.(Ⅰ)若為棱的中點,求的大小;(Ⅱ)若為線段上的點,且,求四面體的體積的最大值.18.在中,內(nèi)角,,的對邊分別為,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求邊的值.19.已知數(shù)列的首項.(1)證明:數(shù)列是等比數(shù)列;(2)數(shù)列的前項和.20.已知α,β為銳角,tanα=(1)求sin2α(2)求tanβ21.已知向量,向量.(1)求向量的坐標;(2)當為何值時,向量與向量共線.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
對四個選項逐個分析,可得出答案.【詳解】對于選項A,當,相交于直線時,內(nèi)有無數(shù)條直線與平行,即A錯誤;對于選項B,當,相交于直線時,存在直線滿足:既與平行又不在兩平面內(nèi),該直線平行于,,故B錯誤;對于選項C,設直線AB垂直于,平面,垂足分別為A,B,假設與不平行,設其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學生的空間想象能力,屬于中檔題.2、D【解析】
結合二倍角公式,對化簡,可求得函數(shù)的最小正周期和最大值.【詳解】由題意,,所以,當時,取得最大值為.由函數(shù)的最小正周期為,故的最小正周期為.故選:D.【點睛】本題考查三角函數(shù)周期性與最值,考查學生的計算求解能力,屬于基礎題.3、A【解析】
利用函數(shù)的為偶函數(shù),可得,代入解析式即可求解.【詳解】是定義在上的偶函數(shù),則,又當時,,所以.故選:A【點睛】本題考查了利用函數(shù)的奇偶性求函數(shù)值,屬于基礎題.4、D【解析】
根據(jù)空間中線線,線面,面面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,則可能平行、相交、或異面;故A錯;B選項,若,,,則可能平行或異面;故B錯;C選項,若,,,如果再滿足,才會有則與垂直,所以與不一定垂直;故C錯;D選項,若,,則,又,由面面垂直的判定定理,可得,故D正確.故選D【點睛】本題主要考查空間的線面,面面位置關系,熟記位置關系,以及判定定理即可,屬于??碱}型.5、C【解析】因為直線:,:,所以或,即是的必要不充分條件.故選C.點睛:本題考查兩條直線平行的判定;由直線的一般式判定兩直線平行或垂直時,若將一般式化成斜截式,往往需要討論斜率是否存在,為了避免討論,記住以下結論:已知直線,.則或;.6、C【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應的最優(yōu)解,再將最優(yōu)解代入目標函數(shù)可得出結果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標為.平移直線,當該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【點睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結合在坐標軸上的截距取最值來取得,考查數(shù)形結合思想的應用,屬于中等題.7、B【解析】試題分析:由題意得,設函數(shù),則,所以,所以方程的解所在的區(qū)間為,故選B.考點:函數(shù)的零點.8、A【解析】
根據(jù)三視圖,還原空間結構體,根據(jù)空間結構體的特征及球、棱錐的體積公式求得總體積.【詳解】根據(jù)空間結構體的三視圖,得原空間結構體如下圖所示:該幾何體是由下面半球的和上面四棱錐的組成由三視圖的棱長及半徑關系,可得幾何體的體積為所以選A【點睛】本題考查了三視圖的簡單應用,空間結構體的體積求法,屬于中檔題.9、D【解析】
利用線面平行、線面垂直的判定定理與性質依次對選項進行判斷,即可得到答案.【詳解】對于A,當時,則與不平行,故A不正確;對于B,直線與平面平行,則直線與平面內(nèi)的直線有兩種關系:平行或異面,故B不正確;對于C,若,則與不垂直,故C不正確;對于D,若兩條直線垂直于同一個平面,則這兩條直線平行,故D正確;故答案選D【點睛】本題考查空間中直線與直線、直線與平面位置關系相關定理的應用,屬于中檔題.10、C【解析】試題分析:由兩直線平行可知系數(shù)滿足考點:兩直線平行的判定二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式,結合根式運算,化簡求得表達式的值.【詳解】依題意,由于,所以故答案為:【點睛】本小題主要考查同角三角函數(shù)的基本關系式、二倍角公式,考查根式運算,屬于基礎題.12、【解析】
利用等差中項的性質可求出的值.【詳解】由等差中項的性質可得,解得.故答案為:.【點睛】本題考查利用等差中項的性質求項的值,考查計算能力,屬于基礎題.13、4【解析】
故答案為:4【點睛】本題主要考查向量的位置關系,考查向量模的運算的處理方法.由于三個向量兩兩所成的角相等,故它們兩兩的夾角為,由于它們的模都是已知的,故它們兩兩的數(shù)量積也可以求出來,對后平方再開方,就可以計算出最后結果.14、【解析】因為圓心在直線上,設圓心,則圓的方程為,設點,因為,所以,化簡得,即,所以點在以為圓心,為半徑的圓上,則,即,整理得,由,得,由,得,所以圓心的縱坐標的取值范圍是.點睛:本題主要考查了圓的方程,動點的軌跡方程、兩圓的位置關系、解不等式等知識的綜合運用,著重考查了轉化與化歸思想和學生的運算求解能力,解答中根據(jù)題設條件得到動點的軌跡方程,利用兩圓的位置關系,列出不等式上解答的關鍵.對于直線與圓的位置關系問題,要熟記有關圓的性質,同時注意數(shù)形結合思想的靈活運用.15、【解析】
根據(jù)題意,設10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,結合題意可得,解可得的值,即可得答案.【詳解】解:根據(jù)題意,設10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,則有,即,解可得:,故答案為:.【點睛】本題考查函數(shù)的應用,涉及指數(shù)、對數(shù)的運算,關鍵是得到關于的方程,屬于基礎題.16、【解析】
直接利用誘導公式化簡求解即可.【詳解】解:,則,故答案為:.【點睛】本題考查誘導公式的應用,三角函數(shù)化簡求值,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)(Ⅰ);(Ⅱ)【解析】
(1)取中點,連接,通過證明,證得平面,由此證得.(2)(I)通過證明,證得平面,由此證得,利用“直斜邊的中線等于斜邊的一半”這個定理及其逆定理,證得.(II)利用求得四面體的體積的表達式,結合基本不等式求得四面體的體積的最大值.【詳解】(1)取的中點,所以,所以.又因為,所以,又,所以面,所以.(2)(Ⅰ)由題意得,在正三角形中,,又因為,且,所以面,所以.∵為棱的中點,∴,在中,為的中點,.∴(Ⅱ),四面體的體積,又因為,即,所以等號當且僅當時成立,此時.故所求的四面體的體積的最大值為.【點睛】本小題主要考查線線垂直的證明,考查線面垂直的證明,考查直角三角形的判定,考查三棱錐體積的最大值的求法,考查基本不等式的運用,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,,然后用正弦定理求解即可(Ⅱ)利用,然后利用余弦定理求解即可【詳解】(Ⅰ)在中,由正弦定理,及,,可得.(Ⅱ)由及,可得,由余弦定理,即,可得.【點睛】本題考查正弦以及余弦定理的應用,屬于基礎題19、(1)證明見解析;(2).【解析】試題分析:(1)對兩邊取倒數(shù)得,化簡得,所以數(shù)列是等比數(shù)列;(2)由(1)是等比數(shù)列.,求得,利用錯位相減法和分組求和法求得前項和.試題解析:(1),又,數(shù)列是以為首項,為公比的等比數(shù)列.(2)由(1)知,,即,設,①則,②由①-②得,.又.數(shù)列的前項和.考點:配湊法求通項,錯位相減法.20、(1)2425(2)【解析】
(1)結合α為銳角利用同角三角函數(shù)的關系,結合倍角公式即可求值;(2)結合α,β為銳角,求出tan(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)店授權品牌合同范例
- 預收款合同范例
- 夫妻雙方婚后購房合同范例
- 學手藝合同范例
- 三年級上冊數(shù)學教案-8.1 兩、三位數(shù)乘一位數(shù)的復習丨蘇教版
- 商店買賣合同范例
- 空調(diào)購銷表格合同范例
- 全冊教案(教案)北師大版四年級下冊數(shù)學
- 第六章 第三節(jié) 彈力與彈簧測力計-(教案)2022秋八年級上冊初二物理滬科版(安徽)
- 2021-2022學年五年級下學期數(shù)學二 折線統(tǒng)計圖《1.單式折線統(tǒng)計圖 》教案
- 電影作品解讀-世界科幻電影智慧樹知到期末考試答案章節(jié)答案2024年成都錦城學院
- NB-T47003.1-2009鋼制焊接常壓容器(同JB-T4735.1-2009)
- 聚焦高質量+探索新高度+-2025屆高考政治復習備考策略
- 惠州市惠城區(qū)2022-2023學年七年級上學期期末教學質量檢測數(shù)學試卷
- 北京市西城區(qū)2022-2023學年七年級上學期期末英語試題【帶答案】
- ISO45001-2018職業(yè)健康安全管理體系之5-4:“5 領導作用和工作人員參與-5.4 工作人員的協(xié)商和參與”解讀和應用指導材料(2024A0-雷澤佳)
- 看圖猜成語共876道題目動畫版
- 小學二年級上冊數(shù)學-數(shù)角的個數(shù)專項練習
- 曲式與作品分析智慧樹知到期末考試答案章節(jié)答案2024年蘭州文理學院
- 園林設施維護方案
- 特種設備使用單位日管控、周排查、月調(diào)度示范表
評論
0/150
提交評論