2024屆江蘇省無錫市錫山高級中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第1頁
2024屆江蘇省無錫市錫山高級中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第2頁
2024屆江蘇省無錫市錫山高級中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第3頁
2024屆江蘇省無錫市錫山高級中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第4頁
2024屆江蘇省無錫市錫山高級中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省無錫市錫山高級中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線l1:ax+2y+8=0與l2:x+(a-1)y+a2-1=0平行,則實數(shù)a的取值是()A.-1或2 B.-1 C.0或1 D.22.已知偶函數(shù)在區(qū)間上單調(diào)遞增,且圖象經(jīng)過點和,則當(dāng)時,函數(shù)的值域是()A. B. C. D.3.在中,,是的內(nèi)心,若,其中,動點的軌跡所覆蓋的面積為(

)A. B. C. D.4.Rt△ABC的三個頂點都在一個球面上,兩直角邊的長分別為6和8,且球心O到平面ABC的距離為12,則球的半徑為()A.13 B.12 C.5 D.105.設(shè)正項等比數(shù)列的前項和為,若,,則公比()A. B. C. D.6.如圖是函數(shù)的部分圖象,則下列命題中,正確的命題序號是①函數(shù)的最小正周期為②函數(shù)的振幅為③函數(shù)的一條對稱軸方程為④函數(shù)的單調(diào)遞增區(qū)間是⑤函數(shù)的解析式為A.③⑤ B.③④ C.④⑤ D.①③7.一組數(shù)平均數(shù)是,方差是,則另一組數(shù),的平均數(shù)和方差分別是()A. B.C. D.8.如圖,在矩形中,,,點為的中點,點在邊上,點在邊上,且,則的最大值是()A. B. C. D.9.平面向量與共線且方向相同,則的值為()A. B. C. D.10.若關(guān)于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知實數(shù)滿足,則的最小值為_______.12.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則直線不經(jīng)過第一象限的概率為__________.13.若在等比數(shù)列中,,則__________.14.設(shè)等比數(shù)列的公比,前項和為,則.15.已知在數(shù)列中,,,則數(shù)列的通項公式______.16.如圖,為了測量樹木的高度,在處測得樹頂?shù)难鼋菫椋谔帨y得樹頂?shù)难鼋菫?,若米,則樹高為______米.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數(shù)使得,求點N到直線l距離的最小值.18.做一個體積為,高為2m的長方體容器,問底面的長和寬分別為多少時,所用的材料表面積最少?并求出其最小值.19.如圖,在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為,,為橢圓上一點,且垂直于軸,連結(jié)并延長交橢圓于另一點,設(shè).(1)若點的坐標(biāo)為,求橢圓的方程及的值;(2)若,求橢圓的離心率的取值范圍.20.知兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求當(dāng)m為何值時,l1與l2:(1)垂直;(2)平行,并求出兩平行線間的距離.21.直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

【詳解】,選A.【點睛】本題考查由兩直線平行求參數(shù).2、A【解析】

由題意結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性確定函數(shù)的值域即可.【詳解】偶函數(shù)在區(qū)間上單調(diào)遞增,則函數(shù)在上單調(diào)遞減,且,故函數(shù)的值域為.本題選擇A選項.【點睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性,函數(shù)值域的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.3、A【解析】

畫出圖形,由已知條件便知P點在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動點P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動點P的軌跡所覆蓋圖形的面積為.故答案為:A.【點睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點所覆蓋的區(qū)域.4、A【解析】

利用勾股定理計算出球的半徑.【詳解】的斜邊長為,所以外接圓的半徑為,所以球的半徑為.故選:A【點睛】本小題主要考查勾股定理計算,考查球的半徑有關(guān)計算,屬于基礎(chǔ)題.5、D【解析】

根據(jù)題意,求得,結(jié)合,即可求解,得到答案.【詳解】由題意,正項等比數(shù)列滿足,,即,,所以,又由,因為,所以.故選:D.【點睛】本題主要考查了的等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式,合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、A【解析】

根據(jù)圖象求出函數(shù)解析式,根據(jù)三角函數(shù)型函數(shù)的性質(zhì)逐一判定.【詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數(shù)的單調(diào)遞增區(qū)間是,故錯;故選:A【點睛】本題主要考查了根據(jù)圖象求正弦型函數(shù)函數(shù)的解析式,及正弦型函數(shù)的性質(zhì),屬于中檔題.7、B【解析】

直接利用公式:平均值方差為,則的平均值和方差為:得到答案.【詳解】平均數(shù)是,方差是,的平均數(shù)為:方差為:故答案選B【點睛】本題考查了平均數(shù)和方差的計算:平均數(shù)是,方差是,則的平均值和方差為:.8、A【解析】

把線段最值問題轉(zhuǎn)化為函數(shù)問題,建立函數(shù)表達(dá)式,從而求得最值.【詳解】設(shè),,,,,,,,,,的最大值是.故選A.【點睛】本題主要考查函數(shù)的實際應(yīng)用,建立合適的函數(shù)關(guān)系式是解決此題的關(guān)鍵,意在考查學(xué)生的分析能力及數(shù)學(xué)建模能力.9、C【解析】

利用向量共線的坐標(biāo)運算求解,驗證得答案.【詳解】向量與共線,,解得.當(dāng)時,,,與共線且方向相同.當(dāng)時,,,與共線且方向相反,舍去.故選.【點睛】本題考查向量共線的坐標(biāo)運算,是基礎(chǔ)的計算題.10、A【解析】

利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【詳解】關(guān)于的不等式在區(qū)間上有解在上有解即在上成立,設(shè)函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【點睛】本題是一道關(guān)于一元二次不等式的題目,解題的關(guān)鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

實數(shù)滿足表示點在直線上,可以看作點到原點的距離,最小值是原點到直線的距離,根據(jù)點到直線的距離公式求解.【詳解】因為實數(shù)滿足=1所以表示直線上點到原點的距離,故的最小值為原點到直線的距離,即,故的最小值為1.【點睛】本題考查點到點,點到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識別.12、【解析】

首先求出試驗發(fā)生包含的事件的取值所有可能的結(jié)果,滿足條件事件直線不經(jīng)過第一象限,符合條件的有種結(jié)果,根據(jù)古典概型概率公式得到結(jié)果.【詳解】試驗發(fā)生包含的事件,,得到的取值所有可能的結(jié)果有:共種結(jié)果,由得,當(dāng)時,直線不經(jīng)過第一象限,符合條件的有種結(jié)果,所以直線不經(jīng)過第一象限的概率.故答案為:【點睛】本題是一道古典概型題目,考查了古典概型概率公式,解題的關(guān)鍵是求出列舉基本事件,屬于基礎(chǔ)題.13、【解析】

根據(jù)等比中項的性質(zhì),將等式化成即可求得答案.【詳解】是等比數(shù)列,若,則.因為,所以,.故答案為:1.【點睛】本題考查等比中項的性質(zhì),考查基本運算求解能力,屬于容易題.14、15【解析】分析:運用等比數(shù)列的前n項和公式與數(shù)列通項公式即可得出的值.詳解:數(shù)列為等比數(shù)列,故答案為15.點睛:本題考查了等比數(shù)列的通項公式與前n項和公式,考查學(xué)生對基本概念的掌握能力與計算能力.15、【解析】

通過變形可知,累乘計算即得結(jié)論.【詳解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案為:an=n.【點睛】本題考查數(shù)列的通項公式的求法,利用累乘法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.16、【解析】

先計算,再計算【詳解】在處測得樹頂?shù)难鼋菫椋谔帨y得樹頂?shù)难鼋菫閯t在中,故答案為【點睛】本題考查了三角函數(shù)的應(yīng)用,也可以用正余弦定理解答.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設(shè)點,再結(jié)合題意可得點N在以為圓心,半徑為的圓R上,再結(jié)合點到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點,且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,,∴,,設(shè),,則,,,,,即.又∵點N在線段上,即,共線,,,∵點M是圓O上任意一點,,∴將m,n代入上式,可得,即.則點N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點N到直線l:距離的最小值為1.【點睛】本題考查了點到直線的距離公式,重點考查了點的軌跡方程的求法,屬中檔題.18、長和寬均為4m時,最小值為64【解析】

利用體積求得ab=16,只需表示出表面積,結(jié)合高為2m,利用基本不等式求出最值即可.【詳解】設(shè)底面的長和寬分別為,因為體積為32,高為c=2m,所以底面積為16,即ab=16所用材料的面積S=2ab+2bc+2ca=32+4(a+b),當(dāng)且僅當(dāng)a=b=4時取等號,答:當(dāng)?shù)酌娴拈L和寬均為4m時,所用的材料表面積最少,其最小值為64【點睛】與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細(xì)理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答.19、(1);(2)【解析】

(1)把的坐標(biāo)代入方程得到,結(jié)合解出后可得標(biāo)準(zhǔn)方程.求出直線的方程,聯(lián)立橢圓方程和直線方程后可求的坐標(biāo),故可得的值.(2)因,故可用表示的坐標(biāo),利用它在橢圓上可得與的關(guān)系,化簡后可得與離心率的關(guān)系,由的范圍可得的范圍.【詳解】(1)因為垂直于軸,且點的坐標(biāo)為,所以,,解得,,所以橢圓的方程為.所以,直線的方程為,將代入橢圓的方程,解得,所以.(2)因為軸,不妨設(shè)在軸上方,,.設(shè),因為在橢圓上,所以,解得,即.(方法一)因為,由得,,,解得,,所以.因為點在橢圓上,所以,即,所以,從而.因為,所以.解得,所以橢圓的離心率的取值范圍.【點睛】求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,方法有待定系數(shù)法、定義法等.圓錐曲線中的離心率的計算或范圍問題,關(guān)鍵是利用題設(shè)條件構(gòu)建關(guān)于的一個等式關(guān)系或不等式關(guān)系,其中不等式關(guān)系的構(gòu)建需要利用題設(shè)中的范圍、坐標(biāo)的范圍、幾何量的范圍或點的位置等.20、(1)m(2)m=﹣7,距離為【解析】

(1)由題意利用兩條直線垂直的性質(zhì),求出m的值.(2)由題意利用兩條直線平行的性質(zhì),求出m的值,再利用兩平行線間的距離公式,求出結(jié)果.【詳解】(1)兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,當(dāng)(3+m)?2+4(5+m)=0時,即6m+26=0時,l1與l2垂直,即m時,l1與l2垂直.(2)當(dāng)時,l1與l2平行,即m=﹣7時,l1與l2平行,此時,兩條直線l1:﹣2x+2y=13,l2:﹣2x+2y=﹣8,此時,兩平行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論