




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省宜賓市南溪區(qū)第三初級中學(xué)2025屆高一下數(shù)學(xué)期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.根據(jù)如下樣本數(shù)據(jù)x
3
4
5
6
7
8
y
可得到的回歸方程為,則()A. B. C. D.2.已知圓C與直線和直線都相切,且圓心C在直線上,則圓C的方程是()A. B.C. D.3.在中,是斜邊上的兩個動點,且,則的取值范圍為()A. B. C. D.4.直線:與圓的位置關(guān)系為()A.相離 B.相切 C.相交 D.無法確定5.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.226.中,,則()A. B. C.或 D.7.化簡()A. B. C. D.8.若一個正四棱錐的側(cè)棱和底面邊長相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°9.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B. C. D.10.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.求的值為________.12.已知是等差數(shù)列,公差不為零,若,,成等比數(shù)列,且,則________13.已知直線與相互垂直,且垂足為,則的值為______.14.已知一組數(shù)據(jù)、、、、、,那么這組數(shù)據(jù)的平均數(shù)為__________.15.若等差數(shù)列的前項和,且,則______________.16.在中,分別是角的對邊,已知成等比數(shù)列,且,則的值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面上有一點列、、、、,對每個正整數(shù),點位于函數(shù)的圖像上,且點、點與點構(gòu)成一個以為頂角頂點的等腰三角形;(1)求點的縱坐標(biāo)的表達式;(2)若對每個自然數(shù),以、、為邊長能構(gòu)成一個三角形,求的取值范圍;(3)設(shè),若?。?)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列的最大項的項數(shù)是多少?試說明理由;18.已知,.(1)求;(2)求.19.半期考試后,班長小王統(tǒng)計了50名同學(xué)的數(shù)學(xué)成績,繪制頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計這50名同學(xué)的數(shù)學(xué)平均成績;用分層抽樣的方法從成績低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績均在中的概率.20.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.21.已知函數(shù).(1)求(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:依據(jù)樣本數(shù)據(jù)描點連線可知圖像為遞減且在軸上的截距大于0,所以.考點:1.散點圖;2.線性回歸方程;2、B【解析】
設(shè)出圓的方程,利用圓心到直線的距離列出方程求解即可【詳解】∵圓心在直線上,∴可設(shè)圓心為,設(shè)所求圓的方程為,則由題意,解得∴所求圓的方程為.選B【點睛】直線與圓的問題絕大多數(shù)都是轉(zhuǎn)化為圓心到直線的距離公式進行求解3、A【解析】
可借助直線方程和平面直角坐標(biāo)系,代換出之間的關(guān)系,再結(jié)合向量的數(shù)量積公式進行求解即可【詳解】如圖所示:設(shè)直線方程為:,,,由得,可設(shè),則,,,,當(dāng)時,,故故選A【點睛】本題考查向量數(shù)量積的坐標(biāo)運算,向量法在幾何中的應(yīng)用,屬于中檔題4、C【解析】
求出圓的圓心坐標(biāo)和半徑,然后運用點到直線距離求出的值和半徑進行比較,判定出直線與圓的關(guān)系.【詳解】因為圓,所以圓心,半徑,所以圓心到直線的距離為,則直線與圓相交.故選【點睛】本題考查了直線與圓的位置關(guān)系,運用點到直線的距離公式求出和半徑比較,得到直線與圓的位置關(guān)系.5、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點睛】本題考查了正弦定理,意在考查學(xué)生的計算能力.6、A【解析】
根據(jù)正弦定理,可得,然后根據(jù)大邊對大角,可得結(jié)果..【詳解】由,所以由,所以故,所以故選:A【點睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.7、A【解析】
減法先變?yōu)榧臃?,利用向量的三角形法則得到答案.【詳解】故答案選A【點睛】本題考查了向量的加減法,屬于簡單題.8、B【解析】
正四棱錐,連接底面對角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對角線,,易知為等腰直角三角形.中點為,又正四棱錐知:底面即為所求角為,答案為B【點睛】本題考查了線面夾角的計算,意在考察學(xué)生的計算能力和空間想象力.9、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A10、B【解析】
由題得在底面的投影為的外心,故為的中點,再利用數(shù)量積計算得解.【詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【點睛】本題主要考查平面向量的運算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、44.5【解析】
通過誘導(dǎo)公式,得出,依此類推,得出原式的值.【詳解】,,同理,,故答案為44.5.【點睛】本題主要考查了三角函數(shù)中的誘導(dǎo)公式的運用,得出是解題的關(guān)鍵,屬于基礎(chǔ)題.12、【解析】
根據(jù)題設(shè)條件,得到方程組,求得,即可得到答案.【詳解】由題意,數(shù)列是等差數(shù)列,滿足,,成等比數(shù)列,且,可得,即且,解得,所以.故答案為:.【點睛】本題主要考查了等差數(shù)列的通項公式,以及等比中項的應(yīng)用,其中解答中熟練利用等差數(shù)列的通項公式和等比中項公式,列出方程組求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】
先由兩直線垂直,可求出的值,將垂足點代入直線的方程可求出的點,再將垂足點代入直線的方程可求出的值,由此可計算出的值.【詳解】,,解得,直線的方程為,即,由于點在直線上,,解得,將點的坐標(biāo)代入直線的方程得,解得,因此,.故答案為:.【點睛】本題考查了由兩直線垂直求參數(shù),以及由兩直線的公共點求參數(shù),考查推理能力與計算能力,屬于基礎(chǔ)題.14、【解析】
利用平均數(shù)公式可求得結(jié)果.【詳解】由題意可知,數(shù)據(jù)、、、、、的平均數(shù)為.故答案為:.【點睛】本題考查平均數(shù)的計算,考查平均數(shù)公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.15、【解析】
設(shè)等差數(shù)列的公差為,根據(jù)題意建立和的方程組,解出這兩個量,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,由題意得,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列中項的計算,解題的關(guān)鍵就是要建立首項和公差的方程組,利用這兩個基本量來求解,考查運算求解能力,屬于基礎(chǔ)題.16、【解析】
利用成等比數(shù)列得到,再利用余弦定理可得,而根據(jù)正弦定理和成等比數(shù)列有,從而得到所求之值.【詳解】∵成等比數(shù)列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因為,所以,故.故答案為.【點睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)最大,詳見解析;【解析】
(1)易得的橫坐標(biāo)為代入函數(shù)即可得縱坐標(biāo).(2)易得數(shù)列為遞減的數(shù)列,若要組成三角形則,再代入表達式求解不等式即可.(3)由可知求即可.【詳解】(1)由點、點與點構(gòu)成一個以為頂角頂點的等腰三角形有.故.(2)因為,故為減函數(shù),故,又以、、為邊長能構(gòu)成一個三角形,故即.解得或,又,故.(3)由取(2)中確定的范圍內(nèi)的最小整數(shù),且,故.故,由題當(dāng)時數(shù)列取最大項.故且,計算得當(dāng)時取最大值.【點睛】本題主要考查了數(shù)列與函數(shù)的綜合題型,需要根據(jù)題意找到函數(shù)橫縱坐標(biāo)的關(guān)系,同時也要列出對應(yīng)的不等式再化簡求解.屬于中等題型.18、(1),(2)【解析】
(1)由題意利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值(2)由題意利用二倍角公式,求得原式子的值.【詳解】(1)∵已知,,,∴則(2)【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式、二倍角公式的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.19、(1)(2)【解析】
⑴用頻率分布直方圖中的每一組數(shù)據(jù)的平均數(shù)乘以對應(yīng)的概率并求和即可得出結(jié)果;⑵首先可通過分層抽樣確定6人中在分數(shù)段以及分數(shù)段中的人數(shù),然后分別寫出所有的基本事件以及滿足題意中“兩名同學(xué)數(shù)學(xué)成績均在中”的基本事件,最后兩者相除,即可得出結(jié)果.【詳解】⑴由頻率分布表,估計這50名同學(xué)的數(shù)學(xué)平均成績?yōu)椋?;⑵由頻率分布直方圖可知分數(shù)低于115分的同學(xué)有人,則用分層抽樣抽取6人中,分數(shù)在有1人,用a表示,分數(shù)在中的有5人,用、、、、表示,則基本事件有、、、、、、、、、、、、、、,共15個,滿足條件的基本事件為、、、、、、、、、,共10個,所以這兩名同學(xué)分數(shù)均在中的概率為.【點睛】本題考查了頻率分布直方圖以及古典概型的相關(guān)性質(zhì),解決本題的關(guān)鍵是對頻率分布直方圖的理解以及對古典概型概率的計算公式的使用,考查推理能力,是簡單題.20、(1);(2).【解析】試題分析:本題主要考查正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式等基礎(chǔ)知識,同時考查考生的分析問題解決問題的能力和運算求解能力.第一問,利用正弦定理將邊換成角,消去,解出角C,再利用解出邊b的長;第二問,利用三角形面積公式,可直接解出a邊的值,再利用余弦定理解出邊c的長.試題解析:(Ⅰ)由正弦定理得,又,所以,.因為,所以.…6分(Ⅱ)因為,,所以.據(jù)余弦定理可得,所以.…12分考點:正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式.21、(1),的增區(qū)間是.(2).【解析】試題分析:(1)利用兩角和正弦公式和降冪公式化簡,得到的形式,利用公式計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學(xué) 2024-2025學(xué)年人教版七年級數(shù)學(xué)下冊期末綜合檢測卷
- 2025年理財規(guī)劃師之二級理財規(guī)劃師高分通關(guān)題庫A4可打印版
- 2019-2025年BIM工程師之BIM工程師模擬考試試卷A卷含答案
- 環(huán)境經(jīng)濟項目合同履行共享經(jīng)濟重點基礎(chǔ)知識點歸納
- 環(huán)境災(zāi)害應(yīng)急人員調(diào)度重點基礎(chǔ)知識點歸納
- 礦山安全生產(chǎn)技術(shù)
- 營養(yǎng)護理與健康管理
- 中式快餐的美食藝術(shù)探索
- 神秘嫵媚的派對妝容
- 如何進行房地產(chǎn)項目的績效評估
- 2025年新高考歷史預(yù)測模擬試卷山東卷(含答案解析)
- 智創(chuàng)上合-專利應(yīng)用與保護知到課后答案智慧樹章節(jié)測試答案2025年春青島工學(xué)院
- 2025年全國中小學(xué)??破罩R競賽題庫及答案(共80題)
- 非營利組織財務(wù)管理制度與流程
- 商業(yè)模式創(chuàng)新的試題與答案
- 《愛護鳥類》參考課件
- 輸血科管理制度、程序性文件、SOP文件
- 《水泥混凝土橋面鋪裝及護欄機械化施工技術(shù)指南》
- 大學(xué)美育知到智慧樹章節(jié)測試課后答案2024年秋上海電機學(xué)院
- 雨傘的專業(yè)知識培訓(xùn)
- 船舶操縱性-第0章緒論課件
評論
0/150
提交評論