版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省深圳市翻身實(shí)驗(yàn)學(xué)校2024屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合,則()A. B. C. D.2.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.3.復(fù)數(shù)()A. B. C.0 D.4.如圖,在平行四邊形中,對(duì)角線與交于點(diǎn),且,則()A. B.C. D.5.如圖,已知直線與拋物線相交于A,B兩點(diǎn),且A、B兩點(diǎn)在拋物線準(zhǔn)線上的投影分別是M,N,若,則的值是()A. B. C. D.6.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.7.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長(zhǎng)除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長(zhǎng)度約為A. B.C. D.8.已知拋物線y2=4x的焦點(diǎn)為F,拋物線上任意一點(diǎn)P,且PQ⊥y軸交y軸于點(diǎn)Q,則的最小值為()A. B. C.l D.19.已知函數(shù)則函數(shù)的圖象的對(duì)稱軸方程為()A. B.C. D.10.已知集合,則()A. B.C. D.11.要排出高三某班一天中,語(yǔ)文、數(shù)學(xué)、英語(yǔ)各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.12.四人并排坐在連號(hào)的四個(gè)座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),則不等式的解集為____.14.設(shè)、分別為橢圓:的左、右兩個(gè)焦點(diǎn),過(guò)作斜率為1的直線,交于、兩點(diǎn),則________15.學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說(shuō):“作品獲得一等獎(jiǎng)”;乙說(shuō):“作品獲得一等獎(jiǎng)”;丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說(shuō):“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是___.16.某校高二(4)班統(tǒng)計(jì)全班同學(xué)中午在食堂用餐時(shí)間,有7人用時(shí)為6分鐘,有14人用時(shí)7分鐘,有15人用時(shí)為8分鐘,還有4人用時(shí)為10分鐘,則高二(4)班全體同學(xué)用餐平均用時(shí)為____分鐘.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.18.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)零點(diǎn),().(i)求的取值范圍;(ii)求證:隨著的增大而增大.19.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。20.(12分)某大學(xué)開學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒(méi)有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請(qǐng)你為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)21.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4于兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.22.(10分)在中,角的對(duì)邊分別為,且,.(1)求的值;(2)若求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
解對(duì)數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對(duì)數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.2、A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.3、C【解析】略4、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問(wèn)題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無(wú)窮多組,在解決具體問(wèn)題時(shí),合理選擇基底會(huì)給解題帶來(lái)方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.5、C【解析】
直線恒過(guò)定點(diǎn),由此推導(dǎo)出,由此能求出點(diǎn)的坐標(biāo),從而能求出的值.【詳解】設(shè)拋物線的準(zhǔn)線為,直線恒過(guò)定點(diǎn),如圖過(guò)A、B分別作于M,于N,由,則,點(diǎn)B為AP的中點(diǎn)、連接OB,則,∴,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為,把代入直線,解得,故選:C.【點(diǎn)睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時(shí)要注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用,屬于中檔題.6、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無(wú)數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.7、D【解析】
設(shè)胡夫金字塔的底面邊長(zhǎng)為,由題可得,所以,該金字塔的側(cè)棱長(zhǎng)為,所以需要燈帶的總長(zhǎng)度約為,故選D.8、A【解析】
設(shè)點(diǎn),則點(diǎn),,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點(diǎn),則點(diǎn),,,,當(dāng)時(shí),取最小值,最小值為.故選:A.【點(diǎn)睛】本題考查拋物線背景下的向量的坐標(biāo)運(yùn)算,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.9、C【解析】
,將看成一個(gè)整體,結(jié)合的對(duì)稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱性的問(wèn)題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.10、C【解析】
由題意和交集的運(yùn)算直接求出.【詳解】∵集合,∴.故選:C.【點(diǎn)睛】本題考查了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時(shí),常借助數(shù)軸求解.注意端點(diǎn)處是實(shí)心圓還是空心圓.11、C【解析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午;②語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語(yǔ)文和數(shù)學(xué)都安排在上午,要求節(jié)語(yǔ)文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語(yǔ)文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語(yǔ)課不加以區(qū)分,此時(shí),排法種數(shù)為種;②語(yǔ)文和數(shù)學(xué)都一個(gè)安排在上午,一個(gè)安排在下午.語(yǔ)文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午,但節(jié)語(yǔ)文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語(yǔ)課也不加以區(qū)分,此時(shí),排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.12、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個(gè)空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個(gè)空位置里進(jìn)行插空,有種,所以共有種.故選:A【點(diǎn)睛】本題考查排列中不相鄰問(wèn)題,常用插空法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,,所以,所以的解集為。點(diǎn)睛:本題考查絕對(duì)值不等式。本題先對(duì)絕對(duì)值函數(shù)進(jìn)行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對(duì)值函數(shù)一般都去絕對(duì)值轉(zhuǎn)化為分段函數(shù)處理。14、【解析】
由橢圓的標(biāo)準(zhǔn)方程,求出焦點(diǎn)的坐標(biāo),寫出直線方程,與橢圓方程聯(lián)立,求出弦長(zhǎng),利用定義可得,進(jìn)而求出?!驹斀狻坑芍?,焦點(diǎn),所以直線:,代入得,即,設(shè),,故由定義有,,所以?!军c(diǎn)睛】本題主要考查橢圓的定義、橢圓的簡(jiǎn)單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長(zhǎng)的求法,注意直線過(guò)焦點(diǎn),位置特殊,采取合適的弦長(zhǎng)公式,簡(jiǎn)化運(yùn)算。15、C【解析】
假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說(shuō)對(duì)的人數(shù).【詳解】分別獲獎(jiǎng)的說(shuō)對(duì)人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對(duì)錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對(duì)錯(cuò)丙對(duì)錯(cuò)對(duì)錯(cuò)丁對(duì)錯(cuò)錯(cuò)對(duì)說(shuō)對(duì)人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【點(diǎn)睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.16、7.5【解析】
分別求出所有人用時(shí)總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點(diǎn)睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計(jì)算出所有數(shù)據(jù)之和,易錯(cuò)點(diǎn)在于概念辨析不清導(dǎo)致計(jì)算出錯(cuò).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.18、(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導(dǎo)函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個(gè)零點(diǎn)求解參數(shù)取值范圍;(ii)設(shè),通過(guò)轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因?yàn)椋援?dāng)時(shí),在上恒成立,所以在上單調(diào)遞增,當(dāng)時(shí),的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,至多一個(gè)零點(diǎn),不符題意,當(dāng)時(shí),因?yàn)橛袃蓚€(gè)零點(diǎn),所以,解得,因?yàn)椋?,所以存在,使得,又因?yàn)椋O(shè),則,所以單調(diào)遞增,所以,即,因?yàn)?,所以存在,使得,綜上,;(ii)因?yàn)?,所以,因?yàn)椋?,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點(diǎn)睛】此題考查利用導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,通過(guò)等價(jià)轉(zhuǎn)化證明與零點(diǎn)相關(guān)的命題.19、(1)見證明;(2)【解析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)椋?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.20、(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對(duì)立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計(jì)為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16610-21:2025 EN Geometrical product specifications (GPS) - Filtration - Part 21: Linear profile filters: Gaussian filters
- 2025年度樓頂廣告牌租賃期廣告效果評(píng)估與優(yōu)化協(xié)議4篇
- 二零二五版集裝箱銷售與全球物流配送、保險(xiǎn)、維修保養(yǎng)及服務(wù)合同范本3篇
- 二零二五年度鋼材采購(gòu)合同綠色物流與配送服務(wù)協(xié)議3篇
- 2025年度零食店收銀員與顧客社交平臺(tái)互動(dòng)合同4篇
- 2025年度智能車牌租賃服務(wù)合同范本8篇
- 2025年高校與地方政府教育資源共享合作協(xié)議3篇
- 2025年度美容院美容院美容項(xiàng)目合作經(jīng)營(yíng)合同4篇
- 2025年度個(gè)人戶外運(yùn)動(dòng)保險(xiǎn)合同樣本2篇
- 二零二五版民營(yíng)醫(yī)院藥劑科藥劑師勞動(dòng)合同4篇
- 數(shù)學(xué)-山東省2025年1月濟(jì)南市高三期末學(xué)習(xí)質(zhì)量檢測(cè)濟(jì)南期末試題和答案
- 中儲(chǔ)糧黑龍江分公司社招2025年學(xué)習(xí)資料
- 湖南省長(zhǎng)沙市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末考試試卷
- 船舶行業(yè)維修保養(yǎng)合同
- 2024年3月江蘇省考公務(wù)員面試題(B類)及參考答案
- 醫(yī)院科室考勤表
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 數(shù)字的秘密生活:最有趣的50個(gè)數(shù)學(xué)故事
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)一 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)關(guān)鍵要素分解
- 基于ADAMS的汽車懸架系統(tǒng)建模與優(yōu)化
- 當(dāng)前中國(guó)個(gè)人極端暴力犯罪個(gè)案研究
評(píng)論
0/150
提交評(píng)論