版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣西賀州市平桂管理區(qū)平桂高級(jí)中學(xué)2023-2024學(xué)年高考數(shù)學(xué)必刷試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件2.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則()A. B.2 C.3 D.3.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.4.使得的展開式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.6.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),,則使得成立的的取值范圍是()A. B.C. D.7.山東煙臺(tái)蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計(jì),煙臺(tái)蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95448.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢9.在邊長為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.10.已知函數(shù)的最小正周期為的圖象向左平移個(gè)單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.11.世紀(jì)產(chǎn)生了著名的“”猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到.如圖是驗(yàn)證“”猜想的一個(gè)程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.12.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開式的系數(shù)為__________.14.如圖,在直四棱柱中,底面是平行四邊形,點(diǎn)是棱的中點(diǎn),點(diǎn)是棱靠近的三等分點(diǎn),且三棱錐的體積為2,則四棱柱的體積為______.15.如圖,直線是曲線在處的切線,則________.16.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.18.(12分)設(shè)數(shù)列,其前項(xiàng)和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前n項(xiàng)和,并求證:.19.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.20.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.21.(12分)設(shè)數(shù)列的前列項(xiàng)和為,已知.(1)求數(shù)列的通項(xiàng)公式;(2)求證:.22.(10分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進(jìn)行分析.2、A【解析】
由奇函數(shù)定義求出和.【詳解】因?yàn)槭嵌x在上的奇函數(shù),.又當(dāng)時(shí),,.故選:A.【點(diǎn)睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.3、B【解析】
根據(jù)復(fù)數(shù)的除法法則計(jì)算,由共軛復(fù)數(shù)的概念寫出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計(jì)算,共軛復(fù)數(shù)的概念,屬于容易題.4、B【解析】二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.5、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時(shí),退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時(shí)滿足輸出結(jié)果,故.故選:C.【點(diǎn)睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時(shí),可以一步一步的書寫,防止錯(cuò)誤,是一道容易題.6、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時(shí),g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時(shí),g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時(shí),f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時(shí),f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運(yùn)用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.7、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.8、D【解析】
根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力.9、C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.10、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項(xiàng).【詳解】因?yàn)楹瘮?shù)的最小正周期是,所以,即,所以,的圖象向左平移個(gè)單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因?yàn)榈倪f增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點(diǎn)睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時(shí),注意自變量的系數(shù),屬于中檔題.11、C【解析】
列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.12、D【解析】
由對數(shù)運(yùn)算法則和等比數(shù)列的性質(zhì)計(jì)算.【詳解】由題意.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運(yùn)算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)定積分求出的值,再用二項(xiàng)展開式公式即可求解.【詳解】因?yàn)樗缘耐?xiàng)公式為當(dāng)時(shí),當(dāng)時(shí),故展開式中的系數(shù)為故答案為:【點(diǎn)睛】此題考查定積分公式,二項(xiàng)展開式公式等知識(shí)點(diǎn),屬于簡單題目.14、12【解析】
由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。【點(diǎn)睛】本題主要考查了棱柱與棱錐的體積的計(jì)算問題,其中解答中正確認(rèn)識(shí)幾何體的結(jié)構(gòu)特征,合理、恰當(dāng)?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,以及空間想象能力,屬于中檔試題。15、.【解析】
求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.16、【解析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個(gè)極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時(shí),遞減,當(dāng)時(shí),遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時(shí),所以當(dāng)時(shí),有一個(gè)極值點(diǎn),當(dāng)時(shí),有兩個(gè)極值點(diǎn),當(dāng)時(shí),沒有極值點(diǎn),綜上因?yàn)槭堑膬蓚€(gè)極值點(diǎn),所以不妨設(shè),得,因?yàn)樵谶f減,且,所以又所以【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1),;(2)詳見解析.【解析】
(1)當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)19、(Ⅰ);(Ⅱ).【解析】
(I)零點(diǎn)分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當(dāng)時(shí),化簡得.解得;當(dāng)時(shí),化簡得.此時(shí)無解;當(dāng)時(shí),化簡得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當(dāng)時(shí),方程等價(jià)于方程.易知當(dāng),方程在上有兩個(gè)不相等的實(shí)數(shù)根.此時(shí)方程在上無解.滿足條件.當(dāng)時(shí),方程等價(jià)于方程,此時(shí)方程在上顯然沒有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),易知當(dāng),方程在上有且只有一個(gè)實(shí)數(shù)根.此時(shí)方程在上也有一個(gè)實(shí)數(shù)根.滿足條件.綜上,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查解絕對值不等式以及方程根的個(gè)數(shù)求參數(shù)范圍,考查學(xué)生的運(yùn)算能力,是一道中檔題.20、(1)見解析(2)【解析】
(1)取中點(diǎn),連接,,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時(shí),常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玩具品牌忠誠度提升考核試卷
- 眼耳鼻喉疾病預(yù)防控制考核試卷
- 滕國文數(shù)據(jù)結(jié)構(gòu)課程設(shè)計(jì)
- 禮儀課課程設(shè)計(jì)
- 電聲器件在智能電網(wǎng)設(shè)備中的應(yīng)用考核試卷
- 2024年版乘用車制造與銷售合同
- 電子技術(shù)課程設(shè)計(jì)音頻
- 2024年外派培訓(xùn)項(xiàng)目特色課程開發(fā)與合同3篇
- 石棉相關(guān)產(chǎn)品的市場價(jià)格和競爭力考核試卷
- 2024年放射性廢物處理檢測服務(wù)合同
- 工行個(gè)人小額貸款合同樣本
- 【8歷期末】安徽省合肥市包河區(qū)智育聯(lián)盟校2023-2024學(xué)年八年級(jí)上學(xué)期1月期末歷史試題
- 醫(yī)療機(jī)構(gòu)并購合同模板
- 江西省萍鄉(xiāng)市2023-2024學(xué)年高一上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 北師版七年級(jí)數(shù)學(xué)上冊期末復(fù)習(xí)考點(diǎn) 清單04 基本平面圖形(12個(gè)考點(diǎn)梳理+題型解讀+提升訓(xùn)練)
- 儀式外包合同范例
- 2025年上半年中科院大連化學(xué)物理研究所金催化研究中心(2302組)招聘1人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024-2025學(xué)年上學(xué)期深圳初中地理七年級(jí)期末模擬卷1
- 學(xué)校2025元旦假期安全教育宣傳課件
- 2024年地理知識(shí)競賽試題200題及答案
- 2020 新ACLS-PCSA課前自我測試-翻譯版玉二醫(yī)【復(fù)制】附有答案
評論
0/150
提交評論