清華大學(xué)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2024屆高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁(yè)
清華大學(xué)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2024屆高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁(yè)
清華大學(xué)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2024屆高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁(yè)
清華大學(xué)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2024屆高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁(yè)
清華大學(xué)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2024屆高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

清華大學(xué)中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測(cè)試2024屆高一下數(shù)學(xué)期末統(tǒng)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,,且,則與的夾角是()A. B. C. D.2.已知、是平面上兩個(gè)不共線的向量,則下列關(guān)系式:①;②;③;④.正確的個(gè)數(shù)是()A.4 B.3 C.2 D.13.?dāng)?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,且,則()A. B.C. D.4.已知a,b為不同的直線,為平面,則下列命題中錯(cuò)誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.?dāng)S兩顆均勻的骰子,則點(diǎn)數(shù)之和為5的概率等于()A. B. C. D.6.在中,角,,所對(duì)的邊分別為,,,則下列命題中正確命題的個(gè)數(shù)為()①若,則;②若,則為鈍角三角形;③若,則.A.1 B.2 C.3 D.07.已知數(shù)列1,,,9是等差數(shù)列,數(shù)列1,,,,9是等比數(shù)列,則()A. B. C. D.8.若直線與圓相切,則()A. B. C. D.9.甲乙兩名同學(xué)6次考試的成績(jī)統(tǒng)計(jì)如右圖,甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標(biāo)準(zhǔn)差分別為則()A. B.C. D.10.已知實(shí)數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿開(kāi)_______.12.已知數(shù)列中,,當(dāng)時(shí),,數(shù)列的前項(xiàng)和為_(kāi)____.13.已知函數(shù),的最小正周期是___________.14.若6是-2和k的等比中項(xiàng),則______.15.某中學(xué)從甲乙丙3人中選1人參加全市中學(xué)男子1500米比賽,現(xiàn)將他們最近集訓(xùn)中的10次成績(jī)(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學(xué)應(yīng)選__________參加比賽.16.已知,則_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,內(nèi)角所對(duì)的邊分別為.已知,.(Ⅰ)求的值;(Ⅱ)求的值.18.某校從高一(1)班和(2)班的某次數(shù)學(xué)考試的成績(jī)中各隨機(jī)抽取了6份數(shù)學(xué)成績(jī)組成一個(gè)樣本,如莖葉圖所示(試卷滿分為100分)(1)試計(jì)算這12份成績(jī)的中位數(shù);(2)用各班的樣本方差比較兩個(gè)班的數(shù)學(xué)學(xué)習(xí)水平,哪個(gè)班更穩(wěn)定一些?19.設(shè)等差數(shù)列的前項(xiàng)和為,已知,,;(1)求公差的取值范圍;(2)判斷與0的大小關(guān)系,并說(shuō)明理由;(3)指出、、、中哪個(gè)最大,并說(shuō)明理由;20.在中,內(nèi)角的對(duì)邊分別為,已知.(1)證明:;(2)若,求邊上的高.21.如圖幾何體中,底面為正方形,平面,,且.(1)求證:平面;(2)求與平面所成角的大小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

根據(jù)相互垂直的向量數(shù)量積為零,求出與的夾角.【詳解】由題有,即,故,因?yàn)?,所?故選:B.【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,向量夾角的求解,屬于基礎(chǔ)題.2、C【解析】

根據(jù)數(shù)量積的運(yùn)算性質(zhì)對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到答案.【詳解】①.,滿足交換律,正確.②.,滿足分配律,正確.③.,所以不正確.④.,

,可正可負(fù)可為0,所以④不正確.故選:C【點(diǎn)睛】本題考查向量數(shù)量積的運(yùn)算性質(zhì),屬于中檔題3、B【解析】分析:先根據(jù)等比數(shù)列、等差數(shù)列的通項(xiàng)公式表示出、,然后表示出和,然后二者作差比較即可.詳解:∵an=a1qn﹣1,bn=b1+(n﹣1)d,∵,∴a1q4=b1+5d,=a1q2+a1q6=2(b1+5d)=2b6=2a5﹣2a5=a1q2+a1q6﹣2a1q4=a1q2(q2﹣1)2≥0所以≥故選B.點(diǎn)睛:本題主要考查了等比數(shù)列的性質(zhì).比較兩數(shù)大小一般采取做差的方法.屬于基礎(chǔ)題.4、D【解析】

根據(jù)線面垂直與平行的性質(zhì)與判定分析或舉出反例即可.【詳解】對(duì)A,根據(jù)線線平行與線面垂直的性質(zhì)可知A正確.對(duì)B,根據(jù)線線平行與線面垂直的性質(zhì)可知B正確.對(duì)C,根據(jù)線面垂直的性質(zhì)知C正確.對(duì)D,當(dāng),時(shí),也有可能.故D錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查了空間中平行垂直的判定與性質(zhì),屬于中檔題.5、B【解析】

試題分析:擲兩顆均勻的骰子,共有36種基本事件,點(diǎn)數(shù)之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點(diǎn):概率問(wèn)題6、C【解析】

根據(jù)正弦定理和大角對(duì)大邊判斷①正確;利用余弦定理得到為鈍角②正確;化簡(jiǎn)利用余弦定理得到③正確.【詳解】①若,則;根據(jù),則即,即,正確②若,則為鈍角三角形;,為鈍角,正確③若,則即,正確故選C【點(diǎn)睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生對(duì)于正弦定理和余弦定理的靈活運(yùn)用.7、B【解析】

根據(jù)等差數(shù)列和等比數(shù)列性質(zhì)可分別求得,,代入即可得到結(jié)果.【詳解】由成等差數(shù)列得:由成等比數(shù)列得:,又與同號(hào)本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,易錯(cuò)點(diǎn)是忽略等比數(shù)列奇數(shù)項(xiàng)符號(hào)相同的特點(diǎn),從而造成增根.8、C【解析】

利用圓心到直線的距離等于圓的半徑即可求解.【詳解】由題得圓的圓心坐標(biāo)為(0,0),所以.故選C【點(diǎn)睛】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.9、C【解析】

利用甲、乙兩名同學(xué)6次考試的成績(jī)統(tǒng)計(jì)直接求解.【詳解】由甲乙兩名同學(xué)6次考試的成績(jī)統(tǒng)計(jì)圖知:甲組數(shù)據(jù)靠上,乙組數(shù)據(jù)靠下,甲組數(shù)據(jù)相對(duì)集中,乙組數(shù)據(jù)相對(duì)分散分散布,由甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標(biāo)準(zhǔn)差分別為得,.故選:.【點(diǎn)睛】本題考查命題真假的判斷,考查平均數(shù)、的定義和性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、D【解析】

設(shè)點(diǎn),根據(jù)條件知點(diǎn)均在單位圓上,由向量數(shù)量積或斜率知識(shí),可發(fā)現(xiàn),對(duì)目標(biāo)式子進(jìn)行變形,發(fā)現(xiàn)其幾何意義為兩點(diǎn)到直線的距離之和有關(guān).【詳解】設(shè),,均在圓上,且,設(shè)的中點(diǎn)為,則點(diǎn)到原點(diǎn)的距離為,點(diǎn)在圓上,設(shè)到直線的距離分別為,,,.【點(diǎn)睛】利用數(shù)形結(jié)合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構(gòu)造系數(shù),才能看出目標(biāo)式子的幾何意義為兩點(diǎn)到直線距離之和的倍.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】甲、乙兩人下棋,只有三種結(jié)果,甲獲勝,乙獲勝,和棋;甲不輸,即甲獲勝或和棋,甲不輸?shù)母怕蕿?2、.【解析】

首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進(jìn)一步求出數(shù)列的通項(xiàng)公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當(dāng)時(shí),,整理得,即,∴數(shù)列是以為首項(xiàng),6為公差的等差數(shù)列,故,所以,故答案為:.【點(diǎn)睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項(xiàng)和,考查運(yùn)算能力和推理能力,屬于中檔題.13、【解析】

先化簡(jiǎn)函數(shù)f(x),再利用三角函數(shù)的周期公式求解.【詳解】由題得,所以函數(shù)的最小正周期為.故答案為【點(diǎn)睛】本題主要考查和角的正切和正切函數(shù)的周期的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.14、-18【解析】

根據(jù)等比中項(xiàng)的性質(zhì),列出等式可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,,得.故答案為:-18【點(diǎn)睛】本題主要考查等比中項(xiàng)的性質(zhì),屬于基礎(chǔ)題.15、乙;【解析】

一個(gè)看均值,要均值小,成績(jī)好;一個(gè)看方差,要方差小,成績(jī)穩(wěn)定.【詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績(jī)好,又穩(wěn)定,應(yīng)選乙、故答案為乙.【點(diǎn)睛】本題考查用樣本的數(shù)據(jù)特征來(lái)解決實(shí)際問(wèn)題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結(jié)論.16、【解析】由題意可得:點(diǎn)睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號(hào)問(wèn)題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問(wèn)題時(shí)簡(jiǎn)化解題過(guò)程的關(guān)鍵所在.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意結(jié)合正弦定理得到的比例關(guān)系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用兩角和的正弦公式可得的值.【詳解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因?yàn)?,得到?由余弦定理可得.(Ⅱ)由(Ⅰ)可得,從而,.故.【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正弦公式,二倍角的正弦與余弦公式,以及正弦定理?余弦定理等基礎(chǔ)知識(shí).考查計(jì)算求解能力.18、(1)80;(2)(1)班.【解析】

(1)從莖葉圖可直接得到答案;(2)通過(guò)方差公式計(jì)算出兩個(gè)半的方差,方差更小的更穩(wěn)定.【詳解】(1)從莖葉圖中可以看到,這12份成績(jī)按從小到大排列,第6個(gè)是78,第7個(gè)是82,所以中位數(shù)為.(2)由表中數(shù)據(jù),易得(1)班的6份成績(jī)的平均數(shù),(2)班的6份成績(jī)的平均數(shù),所以(1)班的6份成績(jī)的方差為;(2)班的6份成績(jī)的方差為.所以有,說(shuō)明(1)班成績(jī)波動(dòng)較小,(2)班兩極分化較嚴(yán)重些,所以(1)班成績(jī)更穩(wěn)定.【點(diǎn)睛】本題主要考查中位數(shù),平均數(shù),方差的相關(guān)計(jì)算和性質(zhì),意在考查學(xué)生的計(jì)算能力及分析能力,難度不大.19、(1);(2),理由見(jiàn)解析;(3),理由見(jiàn)解析;【解析】

(1)由,,,得到不等式且,即可求解公差的取值范圍;(2)由,,結(jié)合等差數(shù)列的性質(zhì)和前項(xiàng)和公式,得到且,即可求解;(3)有(2)知,可得,數(shù)列為遞減數(shù)列,即可求解.【詳解】(1)由題意,等差數(shù)列的前項(xiàng)和為,且,,,可得,,即且,解得,即公差的取值范圍是.(2)由,,可得且,即且,所以,所以.(3)有(2)知,可得,數(shù)列為遞減數(shù)列,當(dāng)時(shí),,當(dāng)時(shí),,所以、、、中最大.【點(diǎn)睛】本題主要考查了等差數(shù)列的前項(xiàng)和公式,等差數(shù)列的性質(zhì),以及等差數(shù)列的單調(diào)性的應(yīng)用,其中解答熟記等差數(shù)列的前項(xiàng)和公式,等差數(shù)列的性質(zhì),合理利用數(shù)列的單調(diào)性是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.20、(1)見(jiàn)解析(2)【解析】分析:(1)由,結(jié)合正弦定理可得,即;(2)由,結(jié)合余弦定理可得,從而可求得邊上的高.詳解:(1)證明:因?yàn)?,所以,所以,?(2)解:因?yàn)?,所?又,所以,解得,所以,所以邊上的高為.點(diǎn)睛:解三角形問(wèn)題,多為邊和角的求值問(wèn)題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問(wèn)題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來(lái),然后確定轉(zhuǎn)化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化.第三步:求結(jié)果.21、(1)見(jiàn)解析(2)【解析】

(1)由,,結(jié)合面面平行判定定理可證得平面平面,根據(jù)面面平行的性質(zhì)證得結(jié)論;(2)連接交于點(diǎn),連接,利用線面垂直的判定定理可證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論