版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西陸川縣中學(xué)2025屆高一下數(shù)學(xué)期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象()A.向右平移 B.向右平移C.向左平移 D.向左平移2.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.3.角的終邊經(jīng)過點,那么的值為()A. B. C. D.4.已知數(shù)列an的前4項為:l,-12,13,A.a(chǎn)n=C.a(chǎn)n=5.若、為異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交6.如圖是函數(shù)的部分圖象,則下列命題中,正確的命題序號是①函數(shù)的最小正周期為②函數(shù)的振幅為③函數(shù)的一條對稱軸方程為④函數(shù)的單調(diào)遞增區(qū)間是⑤函數(shù)的解析式為A.③⑤ B.③④ C.④⑤ D.①③7.在直角梯形中,,為的中點,若,則A.1 B. C. D.8.某單位共有老、中、青職工430人,其中有青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()A.9 B.18 C.27 D.369.已知函數(shù),則不等式的解集為()A. B. C. D.10.已知中,,,若,則的坐標(biāo)為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.12.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.13.己知函數(shù),,則的值為______.14.設(shè),數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______;15.設(shè)等差數(shù)列的前項和為,若,,則的最小值為______.16.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若直線與軸,軸的交點分別為,圓以線段為直徑.(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線過點,與圓交于點,且,求直線的方程.18.已知等比數(shù)列是遞增數(shù)列,且滿足:,.(1)求數(shù)列的通項公式:(2)設(shè),求數(shù)列的前項和.19.已知三棱錐中,是邊長為的正三角形,;(1)證明:平面平面;(2)設(shè)為棱的中點,求二面角的余弦值.20.已知,是第四象限角,求和的值.21.如圖,是菱形,對角線與的交點為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用函數(shù)的圖像可得,從而可求出,再利用特殊點求出,進而求出三角函數(shù)的解析式,再利用三角函數(shù)圖像的變換即可求解.【詳解】由圖可知,所以,當(dāng)時,,由于,解得:,所以,要得到的圖像,則需要將的圖像向右平移.故選:A【點睛】本題考查了由圖像求解析式以及三角函數(shù)的圖像變換,需掌握三角函數(shù)圖像變換的原則,屬于基礎(chǔ)題.2、D【解析】
根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當(dāng)與面垂直時體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關(guān)鍵.3、C【解析】,故選C。4、D【解析】
分母與項數(shù)一樣,分子都是1,正負號相間出現(xiàn),依此可得通項公式【詳解】正負相間用(-1)n-1表示,∴a故選D.【點睛】本題考查數(shù)列的通項公式,屬于基礎(chǔ)題,關(guān)鍵是尋找規(guī)律,尋找與項數(shù)有關(guān)的規(guī)律.5、D【解析】解:因為為異面直線,直線,則與的位置關(guān)系是異面或相交,選D6、A【解析】
根據(jù)圖象求出函數(shù)解析式,根據(jù)三角函數(shù)型函數(shù)的性質(zhì)逐一判定.【詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數(shù)的單調(diào)遞增區(qū)間是,故錯;故選:A【點睛】本題主要考查了根據(jù)圖象求正弦型函數(shù)函數(shù)的解析式,及正弦型函數(shù)的性質(zhì),屬于中檔題.7、B【解析】
連接,因為為中點,得到,可求出,從而可得出結(jié)果.【詳解】連接,因為為中點,,.故選B【點睛】本題主要考查平面向量基本定理的應(yīng)用,熟記平面向量基本定理即可,屬于??碱}型.8、B【解析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個數(shù),算出每個個體被抽到的概率,用概率乘以老年職工的個數(shù),得到結(jié)果.設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,∵x+2x+160=430,∴x=90,即由比例可得該單位老年職工共有90人,∵在抽取的樣本中有青年職工32人,∴每個個體被抽到的概率是用分層抽樣的比例應(yīng)抽取×90=18人.故選B.考點:分層抽樣點評:本題是一個分層抽樣問題,容易出錯的是不理解分層抽樣的含義或與其它混淆.抽樣方法是數(shù)學(xué)中的一個小知識點,但一般不難,故也是一個重要的得分點,不容錯過9、B【解析】
先判斷函數(shù)的單調(diào)性,把轉(zhuǎn)化為自變量的不等式求解.【詳解】可知函數(shù)為減函數(shù),由,可得,整理得,解得,所以不等式的解集為.故選B.【點睛】本題考查函數(shù)不等式,通常根據(jù)函數(shù)的單調(diào)性轉(zhuǎn)化求解,一般不代入解析式.10、A【解析】
根據(jù),,可得;由可得M為BC中點,即可求得的坐標(biāo),進而利用即可求解.【詳解】因為,所以因為,即M為BC中點所以所以所以選A【點睛】本題考查了向量的減法運算和線性運算,向量的坐標(biāo)運算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
已知求,通常分進行求解即可?!驹斀狻繒r,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【點睛】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。12、10【解析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.13、1【解析】
將代入函數(shù)計算得到答案.【詳解】函數(shù)故答案為:1【點睛】本題考查了三角函數(shù)的計算,屬于簡單題.14、【解析】
根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項按要求排列,再根據(jù)項的序號計算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當(dāng)為奇數(shù)時,用數(shù)學(xué)歸納法證明,當(dāng)時,成立,設(shè)時,,當(dāng)時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為奇數(shù)時,;當(dāng)為偶數(shù)時,用數(shù)學(xué)歸納法證明,當(dāng)時,成立,設(shè)時,,當(dāng)時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為偶數(shù)時,;用數(shù)學(xué)歸納法證明:任意偶數(shù)項大于相鄰的奇數(shù)項即證:當(dāng)為奇數(shù),,當(dāng)時,符合,設(shè)時,,當(dāng)時,因為,結(jié)合的單調(diào)性,所以,所以,所以,所以時成立,所以當(dāng)為奇數(shù)時,,據(jù)此可知:,當(dāng)時,若,則有,此時無解;當(dāng)時,此時的下標(biāo)成首項為公差為的等差數(shù)列,通項即為,若,所以,所以.故答案為:.【點睛】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時,要注意到數(shù)列作為特殊的函數(shù),其定義域為;(2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.15、【解析】
用基本量法求出數(shù)列的通項公式,由通項公式可得取最小值時的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點睛】本題考查等差數(shù)列的前項和的最值.首項為負且遞增的等差數(shù)列,滿足的最大的使得最小,首項為正且遞減的等差數(shù)列,滿足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識求得最值.16、<【解析】
直接利用作差比較法解答.【詳解】由題得,因為a>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【點睛】本題主要考查作差比較法,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)或.【解析】
(1)本題首先根據(jù)直線方程確定、兩點坐標(biāo),然后根據(jù)線段為直徑確定圓心與半徑,即可得出圓的標(biāo)準(zhǔn)方程;(2)首先可根據(jù)題意得出圓心到直線的距離為,然后根據(jù)直線的斜率是否存在分別設(shè)出直線方程,最后根據(jù)圓心到直線距離公式即可得出結(jié)果。【詳解】(1)令方程中的,得,令,得.所以點的坐標(biāo)分別為.所以圓的圓心是,半徑是,所以圓的標(biāo)準(zhǔn)方程為.(2)因為,圓的半徑為,所以圓心到直線的距離為.若直線的斜率不存在,直線的方程為,符合題意.若直線的斜率存在,設(shè)其直線方程為,即.圓的圓心到直線的距離,解得.則直線的方程為,即.綜上,直線的方程為或.【點睛】本題考查圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查直線和圓的位置關(guān)系,當(dāng)直線與圓相交時,半徑、弦長的一半以及圓心到直線距離可構(gòu)成直角三角形,考查計算能力,在計算過程中要注意討論直線的斜率是否存在,是中檔題。18、(1);(2)【解析】
(1)利用等比數(shù)列的性質(zhì)結(jié)合已知條件解得首項和公比,由此得通項公式;(2)由(1)得,再利用等差數(shù)列的求和公式進行解答即可.【詳解】(1)由題意,得,又,所以,,或,,由是遞增的等比數(shù)列,得,所以,,且,∴,即;(2)由(1)得,得,所以數(shù)列是以1為首項,以2為公差的等差數(shù)列,所以.【點睛】本題考查了等差數(shù)列與等比數(shù)列的通項公式,以及等差數(shù)列的其前n項和公式的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.19、(1)見解析(2)【解析】
(1)由題意結(jié)合正弦定理可得,據(jù)此可證得平面,從而可得題中的結(jié)論;(2)在平面中,過點作,以所在的直線分別為軸建立空間直角坐標(biāo)系,由空間向量的結(jié)論求得半平面的法向量,然后求解二面角的余弦值即可.【詳解】(1)證明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,過點作,以所在的直線分別為軸建立空間直角坐標(biāo)系,則設(shè)平面的一個法向量為則解得,,即設(shè)平面的一個法向量為則解得,,即由圖可知二面角為銳角,所以二面角的余弦值為.【點睛】本題主要考查面面垂直的證明方法,空間向量的應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、,【解析】
利用誘導(dǎo)公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關(guān)系式可求的值,根據(jù)誘導(dǎo)公式及倍角公式可求的值.【詳解】,又是第四象限角,所以,所以,.【點睛】本題考查同角的三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式以及二倍角公式,此題屬于基礎(chǔ)題.21、(1)證明見解析;(2)證明見解析;(3)【解析】
(1)取的中點,連接,,從而可得為平行四邊形,即可證明平面;(2)只需證明平面.即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股份代持與代管合同協(xié)議2篇
- 二零二五年度水利工程監(jiān)測與施工測量服務(wù)合同范本3篇
- 二零二五版新能源設(shè)備搬運安裝合同細則3篇
- 2025年度航空航天器發(fā)動機安裝與測試合同3篇
- 二零二五年度綠色交通設(shè)施招標(biāo)投標(biāo)合同6篇
- 展會參展資格合同(2篇)
- 二零二五版水利工程鋼筋加工與分包合同規(guī)范范本3篇
- 二零二五版室內(nèi)外景觀裝飾一體化合同3篇
- 2025年度文化演出活動承辦合同3篇
- 二零二五版單位職工食堂員工健康體檢承包合同2篇
- 中建集團面試自我介紹
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 警校生職業(yè)生涯規(guī)劃
- 意識障礙患者的護理診斷及措施
- 2024版《53天天練單元歸類復(fù)習(xí)》3年級語文下冊(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會盛典
- 215kWh工商業(yè)液冷儲能電池一體柜用戶手冊
- 場地平整施工組織設(shè)計-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
- 美容美發(fā)店火災(zāi)應(yīng)急預(yù)案
- 餐車移動食材配送方案
評論
0/150
提交評論