2025屆重慶市三峽名校聯(lián)盟高高一下數(shù)學期末考試試題含解析_第1頁
2025屆重慶市三峽名校聯(lián)盟高高一下數(shù)學期末考試試題含解析_第2頁
2025屆重慶市三峽名校聯(lián)盟高高一下數(shù)學期末考試試題含解析_第3頁
2025屆重慶市三峽名校聯(lián)盟高高一下數(shù)學期末考試試題含解析_第4頁
2025屆重慶市三峽名校聯(lián)盟高高一下數(shù)學期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市三峽名校聯(lián)盟高高一下數(shù)學期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在三棱錐中,,,則三棱錐外接球的體積是()A. B. C. D.2.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.3.設,,,則()A. B.C. D.4.某幾何體的三視圖如圖所示,它的體積為()A.12π B.45π C.57π D.81π5.已知函數(shù),其函數(shù)圖像的一個對稱中心是,則該函數(shù)的單調(diào)遞增區(qū)間可以是()A. B. C. D.6.《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位編著,它對我國民間普及珠算和數(shù)學知識起到了很大的作用,是東方古代數(shù)學的名著,在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的.“九兒問甲歌”就是其中一首:一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問小兒多少歲,各兒歲數(shù)要誰推,這位公公年齡最小的兒子年齡為()A.8歲 B.11歲 C.20歲 D.35歲7.若,則的最小值為()A. B. C.3 D.28.圓的圓心坐標和半徑分別為()A. B. C. D.9.已知集合,,則()A. B. C. D.10.記動點P是棱長為1的正方體的對角線上一點,記.當為鈍角時,則的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.棱長為,各面都為等邊三角形的四面體內(nèi)有一點,由點向各面作垂線,垂線段的長度分別為,則=______.12.已知數(shù)列中,,,則數(shù)列通項___________13.設的內(nèi)角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.14.已知直線與圓相交于,兩點,則=______.15.輾轉(zhuǎn)相除法,又名歐幾里得算法,是求兩個正整數(shù)之最大公約數(shù)的算法,它是已知最古老的算法之一,在中國則可以追溯至漢朝時期出現(xiàn)的《九章算術》.下圖中的程序框圖所描述的算法就是輾轉(zhuǎn)相除法.若輸入、的值分別為、,則執(zhí)行程序后輸出的的值為______.16.若,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知是同一平面內(nèi)的三個向量,其中為單位向量.(Ⅰ)若//,求的坐標;(Ⅱ)若與垂直,求與的夾角.18.如圖,在平面四邊形中,,,,,.(1)求的長;(2)求的長.19.已知圓的方程為.(1)求過點且與圓相切的直線的方程;(2)直線過點,且與圓交于兩點,若,求直線的方程;(3)是圓上一動點,,若點為的中點,求動點的軌跡方程.20.已知函數(shù).(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值.21.在四棱錐中,底面,,,,,點為棱的中點.(1)求證:;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

三棱錐是正三棱錐,取為外接圓的圓心,連結(jié),則平面,設為三棱錐外接球的球心,外接球的半徑為,可求出,然后由可求出半徑,進而求出外接球的體積.【詳解】由題意,易知三棱錐是正三棱錐,取為外接圓的圓心,連結(jié),則平面,設為三棱錐外接球的球心.因為,所以.因為,所以.設三棱錐外接球的半徑為,則,解得,故三棱錐外接球的體積是.故選B.【點睛】本題考查了三棱錐的外接球體積的求法,考查了學生的空間想象能力與計算求解能力,屬于中檔題.2、B【解析】

通過成等比數(shù)列,可以列出一個等式,根據(jù)等差數(shù)列的性質(zhì),可以把該等式變成關于的方程,解這個方程即可.【詳解】因為成等比數(shù)列,所以有,又因為是公差為2的等差數(shù)列,所以有,故本題選B.【點睛】本題考查了等比中項的性質(zhì),考查了等差數(shù)列的性質(zhì),考查了數(shù)學運算能力.3、B【解析】

由指數(shù)函數(shù)的性質(zhì)得,由對數(shù)函數(shù)的性質(zhì)得,根據(jù)正切函數(shù)的性質(zhì)得,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,由對數(shù)函數(shù)的性質(zhì)可得,根據(jù)正切函數(shù)的性質(zhì),可得,所以,故選B.【點睛】本題主要考查了指數(shù)式、對數(shù)式以及正切函數(shù)值的比較大小問題,其中解答中熟記指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),以及正切函數(shù)的性質(zhì)得到的取值范圍是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.4、C【解析】由三視圖可知,此組合體上部是一個母線長為5,底面圓半徑是3的圓錐,下部是一個高為5,底面半徑是3的圓柱故它的體積是5×π×32+π×32×=57π故選C5、D【解析】

根據(jù)對稱中心,結(jié)合的范圍可求得,從而得到函數(shù)解析式;將所給區(qū)間代入求得的范圍,與的單調(diào)區(qū)間進行對應可得到結(jié)果.【詳解】為函數(shù)的對稱中心,解得:,當時,,此時不單調(diào),錯誤;當時,,此時不單調(diào),錯誤;當時,,此時不單調(diào),錯誤;當時,,此時單調(diào)遞增,正確本題正確選項:【點睛】本題考查正切型函數(shù)單調(diào)區(qū)間的求解問題,涉及到利用正切函數(shù)的對稱中心求解函數(shù)解析式;關鍵是能夠采用整體對應的方式,將正切型函數(shù)與正切函數(shù)進行對應,從而求得結(jié)果.6、B【解析】

九個兒子的年齡成等差數(shù)列,公差為1.【詳解】由題意九個兒子的年齡成等差數(shù)列,公差為1.記最小的兒子年齡為a1,則S9=9故選B.【點睛】本題考查等差數(shù)列的應用,解題關鍵正確理解題意,能用數(shù)列表示題意并求解.7、A【解析】

由題意知,,,再由,進而利用基本不等式求最小值即可.【詳解】由題意,,因為,所以,,所以,當且僅當,即時,取等號.故選:A.【點睛】本題考查利用基本不等式求最值,考查學生的計算求解能力,屬于基礎題.8、B【解析】

根據(jù)圓的標準方程形式直接確定出圓心和半徑.【詳解】因為圓的方程為:,所以圓心為,半徑,故選:B.【點睛】本題考查給定圓的方程判斷圓心和半徑,難度較易.圓的標準方程為,其中圓心是,半徑是.9、D【解析】依題意,故.10、B【解析】

建立空間直角坐標系,利用∠APC不是平角,可得∠APC為鈍角等價于cos∠APC<0,即

,從而可求λ的取值范圍.【詳解】

由題設,建立如圖所示的空間直角坐標系D-xyz,

則有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)

=(1,1,-1),∴

=(λ,λ,-λ),

=

+

=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)

=

+

=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)

顯然∠APC不是平角,所以∠APC為鈍角等價于cos∠APC<0

∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得

<λ<1

因此,λ的取值范圍是(

,1),故選B.

點評:本題考查了用空間向量求直線間的夾角,一元二次不等式的解法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

根據(jù)等積法可得∴12、【解析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項,以為公差的等差數(shù)列,∴,∴.故答案為.點睛:在求數(shù)列公式中,除直接應用等差數(shù)列和等比數(shù)列的通項公式外,還有一種常用方法:對遞推式化簡變形,可構造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.13、【解析】

由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點睛】本題主要考查余弦定理以及韋達定理,屬于中檔題.14、.【解析】

將圓的方程化為標準方程,由點到直線距離公式求得弦心距,再結(jié)合垂徑定理即可求得.【詳解】圓,變形可得所以圓心坐標為,半徑直線,變形可得由點到直線距離公式可得弦心距為由垂徑定理可知故答案為:【點睛】本題考查了直線與圓相交時的弦長求法,點到直線距離公式的應用及垂徑定理的用法,屬于基礎題.15、【解析】

程序的運行功能是求,的最大公約數(shù),根據(jù)輾轉(zhuǎn)相除法可得的值.【詳解】由程序語言知:算法的功能是利用輾轉(zhuǎn)相除法求、的最大公約數(shù),當輸入的,,;,,可得輸出的.【點睛】本題主要考查了輾轉(zhuǎn)相除法的程序框圖的理解,掌握輾轉(zhuǎn)相除法的操作流程是解題關鍵.16、;【解析】

把分子的1換成,然后弦化切,代入計算.【詳解】.故答案為-1.【點睛】本題考查三角函數(shù)的化簡求值.解題關鍵是“1”的代換,即,然后弦化切.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或(Ⅱ)【解析】

(Ⅰ)設,根據(jù)向量的模和共線向量的條件,列出方程組,即可求解.(Ⅱ)由,根據(jù)向量的運算求得,再利用向量的夾角公式,即可求解.【詳解】(Ⅰ)設由題則有解得或,.(Ⅱ)由題即,.【點睛】本題主要考查了向量的坐標運算,共線向量的條件及向量的夾角公式的應用,其中解答中熟記向量的基本概念和運算公式,合理準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2)【解析】

(1)在中,先得到再利用正弦定理得到.(2)在中,計算,由余弦定理得到,再用余弦定理得到.【詳解】(1)在中,,則,又由正弦定理,得(2)在中,,則,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【點睛】本題考查了正弦定理和余弦定理,意在考查學生利用正余弦定理解決問題的能力.19、(1)和;(2)或;(3)【解析】

(1)分斜率存在和不存在兩種情況討論,利用直線與圓相切時,圓心到直線的距離等于半徑求解;(2)根據(jù)弦長,可求圓心到直線的距離,利用距離公式,可求直線斜率;(3)利用求軌跡方程的方法(代入法)求解.【詳解】(1)當斜率不存在時,過點的方程是與圓相切,滿足條件,當斜率存在時,設直線方程:,直線與圓相切時,,解得:,.所以,滿足條件的直線方程是或.(2)設直線方程:,設圓心到直線的距離,,解得或,所以滿足條件的直線方程是或.(3)設,那么,將點代入圓,可得.【點睛】本題考查了直線與圓相切,相交的問題,屬于基礎題型,這類求直線的問題,需分斜率不存在和存在兩種情況討論,當直線與圓相切時,利用圓心到直線的距離等于半徑求解,當直線與圓相交時,可利用弦長公式和圓心到直線的距離求解直線方程.20、(1);單調(diào)遞增區(qū)間為:;(2)最大值;最小值.【解析】

(1)先將函數(shù)化簡整理,得到,由得到最小正周期;根據(jù)正弦函數(shù)的對稱軸,即可列式,求出對稱軸;(2)先由,得到,根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】(1)因為,所以最小正周期為:;由得,即單調(diào)遞增區(qū)間是:;(2)因為,所以,因此,當即時,取最小值;當即時,取最大值;【點睛】本題主要考查正弦型三角函數(shù)的周期、對稱軸,以及給定區(qū)間的最值問題,熟記正弦函數(shù)的性質(zhì),以及輔助角公式即可,屬于??碱}型.21、(1)證明見解析;(2)【解析】

(1)取中點,連接,可得四邊形為平行四邊形.再證明平面得到,進而得到即可.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論