2025屆湖南省冷水江市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第1頁
2025屆湖南省冷水江市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第2頁
2025屆湖南省冷水江市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第3頁
2025屆湖南省冷水江市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第4頁
2025屆湖南省冷水江市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆湖南省冷水江市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,為線段上的一點,,且,則A., B.,C., D.,2.若等差數(shù)列的前5項之和,且,則()A.12 B.13 C.14 D.153.下列各點中,可以作為函數(shù)圖象的對稱中心的是()A. B. C. D.4.設(shè)集合,則()A. B. C. D.5.已知等差數(shù)列的前項和為,則()A. B. C. D.6.不等式4xA.-∞,-12C.-∞,-327.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則圓錐的底面半徑為A. B. C. D.()8.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為弧田面積,弧田(如圖所示)由圓弧和其所對的弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑為6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積大約是()()A.16平方米 B.18平方米C.20平方米 D.24平方米9.如圖所示,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率是()A. B. C. D.10.已知為第Ⅱ象限角,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于的方程只有一個實數(shù)根,則實數(shù)_____.12.已知向量,,,則_________.13.利用數(shù)學(xué)歸納法證明不等式“”的過程中,由“”變到“”時,左邊增加了_____項.14.把數(shù)列的所有數(shù)按照從大到小的原則寫成如下數(shù)表:第行有個數(shù),第行的第個數(shù)(從左數(shù)起)記為,則________.15.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.16.已知角滿足且,則角是第________象限的角.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,連接.(1)求證:;(2)點是上一點,若平面,則為何值?并說明理由.(3)若,求二面角的余弦值.18.已知公差不為零的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求.19.已知三棱錐中,,.若平面分別與棱相交于點且平面.求證:(1);(2).20.已知以點為圓心的圓C被直線截得的弦長為.(1)求圓C的標(biāo)準(zhǔn)方程:(2)求過與圓C相切的直線方程:(3)若Q是直線上的動點,QR,QS分別切圓C于R,S兩點.試問:直線RS是否恒過定點?若是,求出恒過點坐標(biāo):若不是,說明理由.21.已知直線:及圓心為的圓:.(1)當(dāng)時,求直線與圓相交所得弦長;(2)若直線與圓相切,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)相等向量的定義及向量的運算法則:三角形法則求出,利用平面向量基本定理求出x,y的值【詳解】由題意,∵,∴,即,∴,即故選A.【點睛】本題以三角形為載體,考查向量的加法、減法的運算法則;利用運算法則將未知的向量用已知向量表示,是解題的關(guān)鍵.2、B【解析】試題分析:由題意得,,又,則,又,所以等差數(shù)列的公差為,所以.考點:等差數(shù)列的通項公式.3、B【解析】

首先利用輔助角公式將函數(shù)化為,然后再采用整體代入即可求解.【詳解】由函數(shù),所以,解得,當(dāng)時,故函數(shù)圖象的對稱中心的是.故選:B【點睛】本題考查了輔助角公式以及整體代入法求三角函數(shù)的中心對稱點,需熟記三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.4、B【解析】

補集:【詳解】因為,所以,選B.【點睛】本題主要考查了集合的運算,需要掌握交集、并集、補集的運算。屬于基礎(chǔ)題。5、C【解析】

利用等差數(shù)列的求和公式及性質(zhì)即可得到答案.【詳解】由于,根據(jù)等差數(shù)列的性質(zhì),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和,難度不大.6、B【解析】

因式分解不等式,可直接求得其解集。【詳解】∵4x2-4x-3≤0,∴【點睛】本題考查求不等式解集,屬于基礎(chǔ)題。7、C【解析】解:8、C【解析】分析:根據(jù)已知數(shù)據(jù)分別計算弦和矢的長度,再按照弧田面積經(jīng)驗公式計算,即可得到答案.詳解:由題可知,半徑,圓心角,弦長:,弦心距:,所以矢長為.按照弧田面積經(jīng)驗公式得,面積故選C.點睛:本題考查弓形面積以及古典數(shù)學(xué)的應(yīng)用問題,考查學(xué)生對題意的理解和計算能力.9、A【解析】

根據(jù)題意,分析可得,由三角形面積公式計算可得△DEF和△ACF的面積,進而可得△ABC的面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,為等邊三角形,則,則,中,,其面積,中,,,其面積,則的面積,故在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率,故選:A.【點睛】本題主要考查幾何概型中的面積類型,基本方法是:分別求得構(gòu)成事件A的區(qū)域面積和試驗的全部結(jié)果所構(gòu)成的區(qū)域面積,兩者求比值,即為概率.10、B【解析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【點睛】本題主要考查二倍角公式的應(yīng)用以及象限角的集合應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

首先從方程看是不能直接解出這個方程的根的,因此可以轉(zhuǎn)化成函數(shù),從函數(shù)的奇偶性出發(fā)?!驹斀狻吭O(shè),則∴為偶函數(shù),其圖象關(guān)于軸對稱,又依題意只有一個零點,故此零點只能是,所以,∴,∴,∴,∴,故答案為:【點睛】本題主要考查了函數(shù)奇偶性以及零點與方程的關(guān)系,方程的根就是對應(yīng)函數(shù)的零點,本題屬于基礎(chǔ)題。12、【解析】

根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點睛】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.13、.【解析】

分析題意,根據(jù)數(shù)學(xué)歸納法的證明方法得到時,不等式左邊的表示式是解答該題的突破口,當(dāng)時,左邊,由此將其對時的式子進行對比,得到結(jié)果.【詳解】當(dāng)時,左邊,當(dāng)時,左邊,觀察可知,增加的項數(shù)是,故答案是.【點睛】該題考查的是有關(guān)數(shù)學(xué)歸納法的問題,在解題的過程中,需要明確式子的形式,正確理解對應(yīng)式子中的量,認(rèn)真分析,明確哪些項是添的,得到結(jié)果.14、【解析】

第行有個數(shù)知每行數(shù)的個數(shù)成等比數(shù)列,要求,先要求出,就必須求出前行一共出現(xiàn)了多少個數(shù),根據(jù)等比數(shù)列的求和公式可求,而由可知,每一行數(shù)的分母成等差數(shù)列,可求出,令,即可求出.【詳解】由第行有個數(shù),可知每一行數(shù)的個數(shù)成等比數(shù)列,首項是,公比是,所以,前行共有個數(shù),所以,第行第一個數(shù)為,,因此,.故答案為:.【點睛】本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意數(shù)陣的應(yīng)用,同時要找出數(shù)陣的規(guī)律,考查推理能力,屬于中等題.15、【解析】

根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點睛】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.16、三【解析】

根據(jù)三角函數(shù)在各個象限的符號,確定所在象限.【詳解】由于,所以為第三、第四象限角;由于,所以為第二、第三象限角.故為第三象限角.故答案為:三【點睛】本小題主要考查三角函數(shù)在各個象限的符號,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2),理由見詳解;(3).【解析】

(1)通過證明EF平面PBD,即可證明;(2)通過線面平行,將問題轉(zhuǎn)化為線線平行,在平面圖形中根據(jù)線段比例進而求解;(3)根據(jù)(1)(2)所得,找到二面角的平面角,然后再進行求解.【詳解】(1)證明:因為四邊形ABCD為正方形,故DAAE,DC,即折疊后的DP又因為平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即證.(2)連接BD交EF于O,連接OM,作圖如下因為//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分別是正方形ABCD兩邊的中點,故可得即為所求.(3)過M作MH垂直于BD,垂足為H,連接OP,作圖如下:由(1)可知:EF平面PBD,因為MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因為BDEF,故即為所求二面角的平面角.設(shè)正方形ABCD的邊長為4,因為,故PM=1,故在中,PM=1,EP=2,根據(jù)勾股定理可得ME同理:在中,PM=1,PF=2,根據(jù)勾股定理可得MF=又EF=故在等腰三角形EMF中,因為O是EF的中點,故MO=.由(1)可知,PD平面PEF,又OP平面PEF,故PDOP,則,故可得,又在中,PE=PF=2,EF=2,O為斜邊EF上的中點,故OP=,又因為MD=3,OD=故可解得MH=故在中,MH=1,MO=,由勾股定理可得OH=故.故二面角的余弦值為.【點睛】本題考查由線面垂直推證線線垂直,由線面平行得到線線平行,以及二面角的求解,屬綜合中檔題.18、(1);(2).【解析】試題分析:(1)利用等差等比基本公式,計算數(shù)列的通項公式;(2)利用裂項相消法求和.試題解析:(1)設(shè)公差為,因為,,成等數(shù)列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.19、(1)證明見解析;(2)證明見解析.【解析】

(1)利用線面平行的性質(zhì)定理可得線線平行,最后利用平行公理可以證明出;(2)利用線面垂直的判定定理可以證明線面垂直,利用線面垂直的性質(zhì)可以證明線線垂直,利用平行線的性質(zhì),最后證明出.【詳解】證明(1)因為平面,平面平面,平面,所以有,同理可證出,根據(jù)平行公理,可得;(2)因為,,,平面,所以平面,而平面,所以,由(1)可知,所以.【點睛】本題考查了線面平行的性質(zhì)定理,線面垂直的判定定理、以及平行公理的應(yīng)用.20、(1)(2)或(3)直線RS恒過定點【解析】

(1)由弦長可得,進而求解即可;(2)分別討論直線的斜率存在與不存在的情況,再利用圓心到直線距離等于半徑求解即可;(3)由QR,QS分別切圓C于R,S兩點,可知,在以為直徑的圓上,設(shè)為,則可得到以為直徑的圓的方程,與圓聯(lián)立可得,由求解即可【詳解】(1)由題,設(shè)點到直線的距離為,則,則弦長,解得,所以圓的標(biāo)準(zhǔn)方程為:(2)當(dāng)切線斜率不存在時,直線方程為,圓心到直線距離為2,故此時相切;當(dāng)切線斜率存在時,設(shè)切線方程為,即,則,解得,則直線方程為,即,綜上,切線方程為或(3)直線RS恒過定點,由題,,則,在以為直徑的圓上,設(shè)為,則以為直徑的圓的方程為:,整理可得,與圓:聯(lián)立可得:,即,令,解得,故無論取何值時,直線恒過定點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論