版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省舒蘭市一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓與直線的位置關(guān)系為()A.相離 B.相切C.相交 D.以上都有可能2.設(shè)函數(shù),若關(guān)于的方程恰有個不同的實數(shù)解,則實數(shù)的取值范圍為()A. B. C. D.3.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.4.已知Sn是等差數(shù)列{an}的前n項和,a2+a4+a6=12,則S7=()A.20 B.28 C.36 D.45.已知數(shù)列是公差不為零的等差數(shù)列,函數(shù)是定義在上的單調(diào)遞增的奇函數(shù),數(shù)列的前項和為,對于命題:①若數(shù)列為遞增數(shù)列,則對一切,②若對一切,,則數(shù)列為遞增數(shù)列③若存在,使得,則存在,使得④若存在,使得,則存在,使得其中正確命題的個數(shù)為()A.0 B.1 C.2 D.36.向量,,若,則實數(shù)的值為A. B. C. D.7.下列函數(shù)中,既是偶函數(shù)又在上是單調(diào)遞減的是A. B. C. D.8.過點(1,0)且與直線垂直的直線方程是()A. B. C. D.9.若是兩條不同的直線,是三個不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則10.當前,我省正分批修建經(jīng)濟適用房以解決低收入家庭住房緊張問題.已知甲、乙、丙三個社區(qū)現(xiàn)分別有低收入家庭360戶、270戶、180戶,若第一批經(jīng)濟適用房中有90套住房用于解決這三個社區(qū)中90戶低收入家庭的住房問題,先采用分層抽樣的方法決定各社區(qū)戶數(shù),則應從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.30 B.40 C.20 D.36二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐如圖所示,底面半徑為,母線長為,則此圓錐的外接球的表面積為___.12.P是棱長為4的正方體的棱的中點,沿正方體表面從點A到點P的最短路程是_______.13.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.14.已知,且關(guān)于的方程有實數(shù)根,則與的夾角的取值范圍是______.15.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.16.某工廠生產(chǎn)甲、乙、丙三種型號的產(chǎn)品,產(chǎn)品數(shù)量之比為3:5:7,現(xiàn)用分層抽樣的方法抽出容量為的樣本,其中甲種產(chǎn)品有18件,則樣本容量=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,向量.(1)求向量的坐標;(2)當為何值時,向量與向量共線.18.已知,,且(1)求函數(shù)的解析式;(2)當時,的最小值是,求此時函數(shù)的最大值,并求出函數(shù)取得最大值時自變量的值19.已知數(shù)列的前項和為,且.(1)求;(2)若,求數(shù)列的前項和.20.如圖,已知點P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面.(1)求證:;(2)若圓柱的體積,①求三棱錐A1﹣APB的體積.②在線段AP上是否存在一點M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.21.某商品監(jiān)督部門對某廠家生產(chǎn)的產(chǎn)品進行抽查檢測估分,監(jiān)督部門在所有產(chǎn)品中隨機抽取了部分產(chǎn)品檢測評分,得到如圖所示的分數(shù)頻率分布直方圖:(1)根據(jù)頻率分布直方圖,估計該廠家產(chǎn)品檢測評分的平均值;(2)該廠決定從評分值超過90的產(chǎn)品中取出5件產(chǎn)品,選擇2件參加優(yōu)質(zhì)產(chǎn)品評選,若已知5件產(chǎn)品中有3件來自車間,有2件產(chǎn)品來自車間,試求這2件產(chǎn)品中含車間產(chǎn)品的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由直線方程可確定其恒過的定點,由點與圓的位置關(guān)系的判定方法知該定點在圓內(nèi),則可知直線與圓相交.【詳解】由得:直線恒過點在圓內(nèi)部直線與圓相交故選:【點睛】本題考查直線與圓位置關(guān)系的判定,涉及到直線恒過定點的求解、點與圓的位置關(guān)系的判定,屬于??碱}型.2、B【解析】
由已知中函數(shù),若關(guān)于的方程恰有個不同的實數(shù)解,可以根據(jù)函數(shù)的圖象分析出實數(shù)的取值范圍.【詳解】函數(shù)的圖象如下圖所示:關(guān)于的方程恰有個不同的實數(shù)解,令t=f(x),可得t2﹣at+2=0,(*)則方程(*)的兩個解在(1,2],可得,解得,故選:B.【點睛】本題考查的知識點是根的存在性及根的個數(shù)判斷,其中根據(jù)已知中函數(shù)的解析式,畫出函數(shù)的圖象,再利用數(shù)形結(jié)合是解答本題的關(guān)鍵.3、D【解析】由題意,當輸入,則;;;,終止循環(huán),則輸出,所以,故選D.4、B【解析】
由等差數(shù)列的性質(zhì)計算.【詳解】由題意,,∴.故選B.【點睛】本題考查等差數(shù)列的性質(zhì),靈活運用等差數(shù)列的性質(zhì)可以很快速地求解等差數(shù)列的問題.在等差數(shù)列中,正整數(shù)滿足,則,特別地若,則;.5、C【解析】
利用函數(shù)奇偶性和單調(diào)性,通過舉例和證明逐項分析.【詳解】①取,,則,故①錯;②對一切,,則,又因為是上的單調(diào)遞增函數(shù),所以,若遞減,設(shè),且,且,所以,則,則,與題設(shè)矛盾,所以遞增,故②正確;③取,則,,令,所以,但是,故③錯誤;④因為,所以,所以,則,則,則存在,使得,故④正確.故選:C.【點睛】本題函數(shù)性質(zhì)與數(shù)列的綜合,難度較難.分析存在性問題時,如果比較難分析,也可以從反面去舉例子說明命題不成立,這也是一種常規(guī)思路.6、C【解析】
利用向量平行的坐標表示,即可求出.【詳解】向量,,,即解得.故選.【點睛】本題主要考查向量平行的坐標表示.7、B【解析】
可先確定奇偶性,再確定單調(diào)性.【詳解】由題意A、B、C三個函數(shù)都是偶函數(shù),D不是偶函數(shù)也不是奇函數(shù),排除D,A中在上不單調(diào),C中在是遞增,只有B中函數(shù)在上遞減.故選B.【點睛】本題考查函數(shù)的奇偶性與單調(diào)性,解題時可分別確定函數(shù)的這兩個性質(zhì).8、D【解析】
設(shè)出直線方程,代入點求得直線方程.【詳解】依題意設(shè)所求直線方程為,代入點得,故所求直線方程為,故選D.【點睛】本小題主要考查兩條直線垂直的知識,考查直線方程的求法,屬于基礎(chǔ)題.9、C【解析】
試題分析:兩個平面垂直,一個平面內(nèi)的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關(guān)系.【詳解】請在此輸入詳解!10、A【解析】
先求出每個個體被抽到的概率,再由乙社區(qū)的低收入家庭數(shù)量乘以每個個體被抽到的概率,即可求解【詳解】每個個體被抽到的概率為,乙社區(qū)由270戶低收入家庭,故應從乙中抽取低收入家庭的戶數(shù)為,故選:A【點睛】本題考查分層抽樣的應用,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,再根據(jù)勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,設(shè)球心為,球的半徑為,則,圓,因為,所以,所以,,則有.解得,則.【點睛】本題主要考查了幾何體的外接球,關(guān)鍵是會找到球心求出半徑,通常結(jié)合勾股定理求.屬于難題.12、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對稱,求得結(jié)果一樣,故解題時選擇以BC為軸展開與BB1為軸展開兩種方式驗證即可【詳解】由題意,若以BC為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為4,6,故兩點之間的距離是若以BB1為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為2,8,故兩點之間的距離是故沿正方體表面從點A到點P的最短路程是cm故答案為【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點距離問題轉(zhuǎn)移到平面中來求13、【解析】
設(shè)點,由和列方程組解出、的值,可得出向量的坐標.【詳解】設(shè)點的坐標為,則,由,得,解得,因此,,故答案為.【點睛】本題考查向量的坐標運算,解題時要將一些條件轉(zhuǎn)化為與向量坐標相關(guān)的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.14、【解析】
先由得出,再根據(jù)即可求出與的夾角的取值范圍.【詳解】因為關(guān)于的方程有實數(shù)根,所以,即,設(shè)與的夾角為,所以,因為,所以,即與的夾角的取值范圍是【點睛】本題主要考查平面向量的夾角公式的應用等,屬基礎(chǔ)題.15、2【解析】
由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】試題分析:由題意得,解得,故答案為.考點:分層抽樣.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)根據(jù)向量坐標運算公式計算;(2)求出的坐標,根據(jù)向量共線與坐標的關(guān)系列方程解出k;試題解析:(1)(2),∵與共線,∴∴18、(1)(2)【解析】試題分析:(1)由向量的數(shù)量積運算代入點的坐標得到三角函數(shù)式,運用三角函數(shù)基本公式化簡為的形式;(2)由定義域可得到的范圍,結(jié)合函數(shù)單調(diào)性求得函數(shù)最值及對應的自變量值試題解析:(1)即(2)由,,,,,此時,考點:1.向量的數(shù)量積運算;2.三角函數(shù)化簡及三角函數(shù)性質(zhì)19、(1);(2).【解析】
(1)利用與的關(guān)系可得,再利用等差數(shù)列的通項公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】解:(1)因為,①所以當時,,又,故.當時,,②①②得,,整理得.因為,所以,所以是以為首項,以1為公差的等差數(shù)列.所以,即.(2)由(1)及得,,所以.【點睛】本小題考查與的關(guān)系、等差數(shù)列的定義及通項公式、數(shù)列求和等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、分類與整合思想等.20、(1)見解析;(2)①,②見解析【解析】
(1)根據(jù),得出平面,故而;(2)①根據(jù)圓柱的體積計算,根據(jù)計算,,代入體積公式計算棱錐的體積;②先證明就是異面直線與所成的角,然后根據(jù)可得,故為的中點.【詳解】(1)證明:∵P在⊙O上,AB是⊙O的直徑,平面又,平面,又平面,故.(2)①由題意,解得,由,得,,∴三棱錐的體積.②在AP上存在一點M,當M為AP的中點時,使異面直線OM與所成角的余弦值為.證明:∵O、M分別為的中點,則,就是異面直線OM與所成的角,又,在中,.∴在AP上存在一點M,當M為AP的中點時,使異面直線OM與所成角的余弦值為.【點睛】本題主要考查了線面垂直的判定與性質(zhì),棱錐的體積計算以及異面直線所成的角,屬于中檔題.21、(1);(2).【解析】
(1)利用平均數(shù)=每個小矩形面積小矩形底邊中點橫坐標之和,即可求解.(2)設(shè)這5件產(chǎn)品分別為,其中1,2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年枸杞采摘采摘技術(shù)與設(shè)備租賃合同3篇
- 二零二五年度網(wǎng)絡安全人才培養(yǎng)與輸送合同2篇
- 二零二五版果園果樹種植與農(nóng)業(yè)技術(shù)培訓服務合同樣本3篇
- 二零二五年度采砂廠承包綜合效益評估合同范本3篇
- 二零二五版智能化住宅項目施工及造價管理合同3篇
- 二零二五年度環(huán)保污水處理設(shè)備采購補充合同范本2篇
- 2025年新型城鎮(zhèn)化項目場地租賃與開發(fā)建設(shè)合同范本2篇
- 二零二五版環(huán)保設(shè)施投資合作合同3篇
- 二零二五版交通事故車輛損失賠償合同3篇
- 二零二五版特種車輛租賃及操作培訓合同3篇
- 寒潮雨雪應急預案范文(2篇)
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓計劃
- 南京工業(yè)大學浦江學院《線性代數(shù)(理工)》2022-2023學年第一學期期末試卷
- 2024版機床維護保養(yǎng)服務合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論