版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省教考聯(lián)盟高一下數(shù)學期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列的首項,公比,則()A. B. C. D.2.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.3.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.,則的大小關系是()A.B.C.D.5.已知,,,若不等式恒成立,則t的最大值為()A.4 B.6 C.8 D.96.在中,角的對邊分別為,且,,,則的周長為()A. B. C. D.7.中,角的對邊分別為,且,則角()A. B. C. D.8.已知直線:是圓的對稱軸.過點作圓的一條切線,切點為,則()A.2 B. C.6 D.9.若一個人下半身長(肚臍至足底)與全身長的比近似為5-12(5-12≈0.618A.身材完美,無需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時穿戴同樣高度的增高鞋與帽子10.若,,則的終邊所在的象限為()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對邊長分別為,若,則的最小值為__________.12.已知(),則________.(用表示)13.某縣現(xiàn)有高中數(shù)學教師500人,統(tǒng)計這500人的學歷情況,得到如下餅狀圖,該縣今年計劃招聘高中數(shù)學新教師,只招聘本科生和研究生,使得招聘后該縣高中數(shù)學??茖W歷的教師比例下降到,且研究生的比例保持不變,則該縣今年計劃招聘的研究生人數(shù)為_______.14.已知,,,則的最小值為________.15.平面⊥平面,,,,直線,則直線與的位置關系是___.16.四名學生按任意次序站成一排,則和都在邊上的概率是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點P在線段EF上運動,設平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.18.已知方程,.(1)若是它的一個根,求的值;(2)若,求滿足方程的所有虛數(shù)的和.19.如圖,三棱柱,底面,且為正三角形,,,為中點.(1)求證:直線平面;(2)求二面角的大小.20.設一元二次不等式的解集為.(Ⅰ)當時,求;(Ⅱ)當時,求的取值范圍.21.在公差不為零的等差數(shù)列中,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,設數(shù)列的前項和,求證.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由等比數(shù)列的通項公式可得出.【詳解】解:由已知得,故選:B.【點睛】本題考查等比數(shù)列的通項公式的應用,是基礎題.2、B【解析】分析:首先根據(jù)正方形的面積求得正方形的邊長,從而進一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關公式求得圓柱的表面積.詳解:根據(jù)題意,可得截面是邊長為的正方形,結合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點睛:該題考查的是有關圓柱的表面積的求解問題,在解題的過程中,需要利用題的條件確定圓柱的相關量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時候,一定要注意是兩個底面圓與側(cè)面積的和.3、B【解析】
利用正弦定理結合條件,得到,再由,結合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【點睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.4、D【解析】由題意得,,故選D.【點睛】本題考查函數(shù)的三角恒等變換和三角函數(shù)的圖像與性質(zhì),涉及函數(shù)與不等式思想、數(shù)形結合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,具有一定的綜合性,屬于中檔題型.首先利用誘導公式和兩角和差公式將化簡,再利用正弦的函數(shù)圖像可得正解.5、C【解析】
因為不等式恒成立,所以只求得的最小值即可,結合,用“1”的代換求其最小值.【詳解】因為,,,若不等式恒成立,令y=,當且僅當且即時,取等號所以所以故t的最大值為1.故選:C【點睛】本題主要考查不等式恒成立和基本不等式求最值,還考查了運算求解的能力,屬于中檔題.6、C【解析】
根據(jù),得到,利用余弦定理,得到關于的方程,從而得到的值,得到的周長.【詳解】在中,由正弦定理因為,所以因為,,所以由余弦定理得即,解得,所以所以的周長為.故選C.【點睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡單題.7、B【解析】
根據(jù)題意結合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點睛】此題考查利用正弦定理進行邊角互化,根據(jù)邊的關系判斷三角形的形狀,求出三角形的內(nèi)角.8、C【解析】試題分析:直線l過圓心,所以,所以切線長,選C.考點:切線長9、C【解析】
對每一個選項逐一分析研究得解.【詳解】A.103103+72B.假設她需要戴上高度為x厘米的帽子,則103175C.假設她可以穿一雙合適高度為y的增高鞋,則103+D.假設同時穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點睛】本題主要考查學生對新定義的理解和應用,屬于基礎題.10、B【解析】由一全正二正弦三正切四余弦可得的終邊所在的象限為第二象限,故選B.考點:三角函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)余弦定理,可得,然后利用均值不等式,可得結果.【詳解】在中,,由,所以又,當且僅當時取等號故故的最小值為故答案為:【點睛】本題考查余弦定理以及均值不等式,屬基礎題.12、【解析】
根據(jù)同角三角函數(shù)之間的關系,結合角所在的象限,即可求解.【詳解】因為,所以,故,解得,又,,所以.故填.【點睛】本題主要考查了同角三角函數(shù)之間的關系,三角函數(shù)在各象限的符號,屬于中檔題.13、50【解析】
先計算出招聘后高中數(shù)學教師總?cè)藬?shù),然后利用比例保持不變,得到該縣今年計劃招聘的研究生人數(shù).【詳解】招聘后該縣高中數(shù)學??茖W歷的教師比例下降到,則招聘后,該縣高中數(shù)學教師總?cè)藬?shù)為,招聘后研究生的比例保持不變,該縣今年計劃招聘的研究生人數(shù)為.【點睛】本題主要考查學生的閱讀理解能力和分析能力,從題目中提煉關鍵字眼“比例保持不變”是解題的關鍵.14、1【解析】
由題意整體代入可得,由基本不等式可得.【詳解】由,,,則.當且僅當=,即a=3且b=時,取得最小值1.故答案為:1.【點睛】本題考查基本不等式求最值,整體法并湊出可用基本不等式的形式是解決問題的關鍵,屬于基礎題.15、【解析】
利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長方體中,設平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因為,由線面垂直的性質(zhì)定理,可得.【點睛】空間中點、線、面的位置關系問題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進行求解.16、【解析】
寫出四名學生站成一排的所有可能情況,得出和都在邊上的情況即可求得概率.【詳解】四名學生按任意次序站成一排,所有可能的情況為:,,,,共24種情況,其中和都在邊上共有,4種情況,所以和都在邊上的概率是.故答案為:【點睛】此題考查古典概型,根據(jù)古典概型求概率,關鍵在于準確求出基本事件總數(shù)和某一事件包含的基本事件個數(shù).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)θ最小值為60°【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解?!驹斀狻浚?)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).設n1=(x,y,z)為平面PAB的法向量,由得,取y=1,則n1=(,1,-λ).因為n2=(0,1,0)是平面ADE的一個法向量,所以cosθ===.因為0≤λ≤,所以當λ=時,cosθ有最大值,所以θ的最小值為60°.【點睛】本題考查了線面垂直關系的判定與證明,以及空間角的求解問題,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關系的判定定理和性質(zhì)定理,通過嚴密推理是線面位置關系判定的關鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18、(1);(2)190.【解析】
(1)先設出的代數(shù)形式,把代入所給的方程,化簡后由實部和虛部對應相等進行求值;(2)由方程由虛根的條件,求出的所有的取值,再由方程虛根成對出現(xiàn)的特點,求出所有虛根之和.【詳解】解:(1)設,是的一個根,,,,解得,,,(2)方程有虛根,,解得,,,2,,又虛根是成對出現(xiàn)的,所有的虛根之和為.【點睛】本題是復數(shù)的綜合題,考查了復數(shù)相等條件的應用,方程有虛根的等價條件,以及方程中虛根的特點,屬于中檔題.19、(1)證明見解析;(2).【解析】
(1)連交于,連,則點為中點,為中點,得,即可證明結論;(1)為正三角形,為中點,可得,再由底面,得底面,得,可證平面,有,為的平面角,解,即可求出結論.【詳解】(1)連交于,連,三棱柱,側(cè)面為平行四邊形,所以點為中點,為中點,所以,因為平面,平面,所以直線平面;(2)為正三角形,為中點,可得,三棱柱,所以,底面,所以底面,底面,所以,又平面,所以平面,平面,所以,為的平面角,在中,,,所以,所以二面角的大小為.【點睛】本題考查線面平行的證明,用幾何法求二面角的平面角,做出二面角的平面角是解題的關鍵,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)將代入得到關于的不等式,結合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集為即不等式恒成立,求解時結合與之對應的二次函數(shù)考慮可得到需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- NB/T 11542-2024煤礦巷道籠式錨索底板錨注支護技術規(guī)范
- GH/T 1439-2023小茴香
- 《客戶跟蹤技巧》課件
- 《chapter固定資產(chǎn)》課件
- 《肩關節(jié)鏡簡介》課件
- 單位管理制度合并選集【人事管理篇】
- 2024第八屆全國職工職業(yè)技能大賽(網(wǎng)約配送員)網(wǎng)上練兵考試題庫-中(多選題)
- 單位管理制度分享匯編人事管理篇
- 單位管理制度分享大全人力資源管理篇十篇
- 單位管理制度范例選集人力資源管理篇十篇
- Cinema 4D從入門到精通PPT完整版全套教學課件
- T-SHSPTA 002-2023 藥品上市許可持有人委托銷售管理規(guī)范
- 我國雙語教育發(fā)展現(xiàn)狀以及建議
- 放射治療技術常用放射治療設備課件
- 保研推免個人簡歷
- 《計算機組成原理》武漢大學2023級期末考試試題答案
- 廣東廣州白云區(qū)2021學年第二學期期末學生學業(yè)質(zhì)量診斷調(diào)研六年級語文(含答案)
- 公安院校公安專業(yè)招生體檢表
- 2023-2024學年四川省瀘州市小學數(shù)學四年級上冊期末評估測試題
- GB/T 9944-2015不銹鋼絲繩
- GB/T 5019.11-2009以云母為基的絕緣材料第11部分:塑型云母板
評論
0/150
提交評論