版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省湘西新高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開(kāi)式中的系數(shù)為()A. B. C. D.2.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2 C.1 D.03.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則()A. B. C. D.4.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對(duì)稱軸是,則的最小值為A. B. C. D.5.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i6.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開(kāi)始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開(kāi)始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米7.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.08.已知平面向量,滿足,,且,則()A.3 B. C. D.59.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊(duì)方法數(shù)為().A.432 B.576 C.696 D.96010.已知的值域?yàn)?,?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.911.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.12.一個(gè)四面體所有棱長(zhǎng)都是4,四個(gè)頂點(diǎn)在同一個(gè)球上,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)如圖是一個(gè)算法的流程圖,若輸出的值是,則輸入的值為_(kāi)___________.14.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎(jiǎng).在比賽結(jié)果揭曉之前,四人的猜測(cè)如下表,其中“√”表示猜測(cè)某人獲獎(jiǎng),“×”表示猜測(cè)某人未獲獎(jiǎng),而“○”則表示對(duì)某人是否獲獎(jiǎng)未發(fā)表意見(jiàn).已知四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的,那么兩名獲獎(jiǎng)?wù)呤莀______.甲獲獎(jiǎng)乙獲獎(jiǎng)丙獲獎(jiǎng)丁獲獎(jiǎng)甲的猜測(cè)√××√乙的猜測(cè)×○○√丙的猜測(cè)×√×√丁的猜測(cè)○○√×15.設(shè)實(shí)數(shù),若函數(shù)的最大值為,則實(shí)數(shù)的最大值為_(kāi)_____.16.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).(1)求證:直線MN⊥平面ACB1;(2)求點(diǎn)C1到平面B1MC的距離.18.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長(zhǎng).19.(12分)改革開(kāi)放年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問(wèn)卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識(shí)強(qiáng).求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;已知交通安全意識(shí)強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)用分層抽樣的方式從得分在分以下的樣本中抽取人,再?gòu)娜酥须S機(jī)選取人對(duì)未來(lái)一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中20.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點(diǎn)分別為,,點(diǎn),求的值.21.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.22.(10分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由題意,根據(jù)二項(xiàng)式定理展開(kāi)式的通項(xiàng)公式,得展開(kāi)式的通項(xiàng)為,則展開(kāi)式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是常考知識(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.2、C【解析】
集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個(gè)數(shù),即為交集中元素的個(gè)數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時(shí),,不滿足題意;故方程組有唯一的解.故.故選:C.【點(diǎn)睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.3、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算求解能力,屬于基礎(chǔ)題.4、C【解析】
將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,因?yàn)楹瘮?shù)的圖象的一條對(duì)稱軸是,所以,即,所以,又,所以的最小值為.故選C.5、D【解析】
兩邊同乘-i,化簡(jiǎn)即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為6、D【解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.7、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無(wú)明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.8、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.9、B【解析】
先把沒(méi)有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊(duì)方法數(shù)為種.故選:B.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,在分類時(shí),要注意不重不漏的原則,本題是一道中檔題.10、A【解析】
利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對(duì)數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.11、A【解析】
化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問(wèn)題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。12、A【解析】
將正四面體補(bǔ)成正方體,通過(guò)正方體的對(duì)角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個(gè)正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長(zhǎng)都是4,∴正方體的棱長(zhǎng)為,設(shè)球的半徑為,則,解得,所以,故選:A.【點(diǎn)睛】本題主要考查多面體外接球問(wèn)題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對(duì)角線,從而將問(wèn)題巧妙轉(zhuǎn)化,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
依題意,當(dāng)時(shí),由,即,解得;當(dāng)時(shí),由,解得或(舍去).綜上,得或.14、乙、丁【解析】
本題首先可根據(jù)題意中的“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目分為四種情況,然后對(duì)四種情況依次進(jìn)行分析,觀察四人所猜測(cè)的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測(cè)正確,則乙,丙,丁猜測(cè)錯(cuò)誤,與題意不符,故甲猜測(cè)錯(cuò)誤;若乙猜測(cè)正確,則依題意丙猜測(cè)無(wú)法確定正誤,丁猜測(cè)錯(cuò)誤;若丙猜測(cè)正確,則丁猜測(cè)錯(cuò)誤;綜上只有乙,丙猜測(cè)不矛盾,依題意乙,丙猜測(cè)是正確的,從而得出乙,丁獲獎(jiǎng).所以本題答案為乙、丁.【點(diǎn)睛】本題是一個(gè)簡(jiǎn)單的合情推理題,能否根據(jù)“四個(gè)人中有且只有兩個(gè)人的猜測(cè)是正確的”將題目所給條件分為四種情況并通過(guò)推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題.15、【解析】
根據(jù),則當(dāng)時(shí),,即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因?yàn)椋之?dāng)時(shí),,即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由等價(jià)于,令,,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.16、20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點(diǎn),通過(guò)等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);∵M(jìn)是AB的中點(diǎn).所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,因?yàn)镸P,所以?MP,因?yàn)镃M,B1C;B1M,所以所以:CM?B1M.因?yàn)?,所以,解得所以點(diǎn),到平面的距離為【點(diǎn)睛】本題主要考查面面垂直的證明以及點(diǎn)到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點(diǎn)到面的距離常用體積轉(zhuǎn)化來(lái)求,屬于中檔題18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識(shí)記公式,屬中檔題.19、,概率為;列聯(lián)表詳見(jiàn)解析,有的把握認(rèn)為交通安全意識(shí)與性別有關(guān);.【解析】
根據(jù)頻率和為列方程求得的值,計(jì)算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計(jì)算的值,對(duì)照臨界值得出結(jié)論;用分層抽樣法求得抽取各分?jǐn)?shù)段人數(shù),用列舉法求出基本事件數(shù),計(jì)算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識(shí)強(qiáng)的概率根據(jù)題意可知,安全意識(shí)強(qiáng)的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)所以有的把握認(rèn)為交通安全意識(shí)與性別有關(guān).由題意可知分?jǐn)?shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設(shè)的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設(shè)至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)應(yīng)用問(wèn)題,也考查了列舉法求古典概型的概率問(wèn)題,屬于中檔題.20、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024屆貴港市重點(diǎn)中學(xué)高三年級(jí)四月考數(shù)學(xué)試題
- 采購(gòu)合同維保內(nèi)容
- 編制合同心得體會(huì)
- 防汛應(yīng)急演練
- 銀行會(huì)計(jì)主管述職報(bào)告
- 遼寧省丹東市七校協(xié)作體2024-2025學(xué)年高一上學(xué)期11月期中地理試題
- 高考班考題昌黎文匯學(xué)校2024-2025學(xué)年第一學(xué)期期中考試高二化學(xué)試題
- 放射性示蹤在醫(yī)學(xué)影像中的作用
- 風(fēng)電電纜相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 基礎(chǔ)地質(zhì)勘查服務(wù)相關(guān)項(xiàng)目投資計(jì)劃書
- 紫薇花的栽培管理方法及注意事項(xiàng)
- 膠輪車司機(jī):膠輪車司機(jī)考試試題
- 舜宇集團(tuán)2024測(cè)試題
- 【生物】呼吸道對(duì)空氣的處理教學(xué)課件-2023-2024學(xué)年人教版七年級(jí)下冊(cè)
- 2024年長(zhǎng)沙衛(wèi)生職業(yè)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 報(bào)告教練林丹李宗偉
- 《足球理論教學(xué)》課件
- 2024年廖俊波同志先進(jìn)事跡心得體會(huì)教師4篇
- 初中數(shù)學(xué)應(yīng)用題解題思路分享
- 企業(yè)綠色發(fā)展建設(shè)方案
- 小朋友高爾夫訓(xùn)練計(jì)劃書
評(píng)論
0/150
提交評(píng)論