江西省撫州市七校高三六校第一次聯(lián)考新高考數(shù)學試卷及答案解析_第1頁
江西省撫州市七校高三六校第一次聯(lián)考新高考數(shù)學試卷及答案解析_第2頁
江西省撫州市七校高三六校第一次聯(lián)考新高考數(shù)學試卷及答案解析_第3頁
江西省撫州市七校高三六校第一次聯(lián)考新高考數(shù)學試卷及答案解析_第4頁
江西省撫州市七校高三六校第一次聯(lián)考新高考數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江西省撫州市七校高三六校第一次聯(lián)考新高考數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.2.已知向量與的夾角為,,,則()A. B.0 C.0或 D.3.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.4.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.5.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.6.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.407.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到8.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.9.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.10.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,11.函數(shù)的大致圖像為()A. B.C. D.12.若復數(shù)滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(-4,3),=(6,m),且,則m=__________.14.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應該為__________.15.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.16.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.18.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(?。θ我獾?;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.19.(12分)在平面直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.20.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點,且.①求實數(shù)的取值范圍;②求證:.22.(10分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.2、B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.3、C【解析】

求出導函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.4、A【解析】

首先畫出可行域,利用目標函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規(guī)劃問題,求目標函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.5、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.6、C【解析】

設出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.7、D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.8、B【解析】

由,,三點共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.9、D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.10、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.11、D【解析】

通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.12、D【解析】

利用復數(shù)模的計算、復數(shù)的除法化簡復數(shù),再根據(jù)復數(shù)的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數(shù)模的計算、復數(shù)的除法、復數(shù)的幾何意義,考查運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、8.【解析】

利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應用.屬于容易題.14、【解析】

根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規(guī)律.15、0.08【解析】

先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).16、【解析】

首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導數(shù)的計算、利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導,再對a進行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當時,>0.當,時,=.故當>在區(qū)間內(nèi)恒成立時,必有.當時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當時,令=().當時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當時,=>0,即>恒成立.綜上,.【考點】導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點睛】本題考查導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學生不易想到,有一定的難度.18、(1);(2)①;②證明見解析.【解析】

(1)由條件可得,結(jié)合等差數(shù)列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當,,,由等比數(shù)列的定義和不等式的性質(zhì),化簡變形,即可得到所求結(jié)論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項為,公差為的等差數(shù)列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數(shù)列;同理可得以為首項、為公比的等比數(shù)列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項,為公比的等比數(shù)列,其中.【點睛】本題考查新定義的理解和運用,考查等差數(shù)列和等比數(shù)列的定義和通項公式的運用,考查分類討論思想方法和推理、運算能力,屬于難題.19、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設為曲線上一點,點到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標方程為,∴曲線的普通方程為,即.(2)設為曲線上一點,則點到曲線的圓心的距離.∵,∴當時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.20、(1);(2)【解析】

(1)消去參數(shù),將圓的參數(shù)方程,轉(zhuǎn)化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉(zhuǎn)化為普通方程,考查直角坐標方程轉(zhuǎn)化為極坐標方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.21、(1);(2)①;②詳見解析.【解析】

(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數(shù)的關(guān)系,進而用含的式子表示,令,對求導分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進而求最值證明不等式成立.【詳解】解:(1)依題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論