陽江市重點中學2025屆高一數(shù)學第二學期期末檢測模擬試題含解析_第1頁
陽江市重點中學2025屆高一數(shù)學第二學期期末檢測模擬試題含解析_第2頁
陽江市重點中學2025屆高一數(shù)學第二學期期末檢測模擬試題含解析_第3頁
陽江市重點中學2025屆高一數(shù)學第二學期期末檢測模擬試題含解析_第4頁
陽江市重點中學2025屆高一數(shù)學第二學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陽江市重點中學2025屆高一數(shù)學第二學期期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知函數(shù)(,)的部分圖像如圖所示,則的值分別是()A. B.C. D.3.在中,角的對邊分別是,若,且三邊成等比數(shù)列,則的值為()A. B. C.1 D.24.已知直線與直線垂直,則()A. B. C.或 D.或5.等差數(shù)列的前項和為.若,則()A. B. C. D.6.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.7.設為直線,是兩個不同的平面,下列說法中正確的是()A.若,則B.若,則C.若,則D.若,則8.在中,,.若點滿足,則()A. B. C. D.9.已知一個扇形的圓心角為,半徑為1.則它的弧長為()A. B. C. D.10.若則一定有()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)f(x)=cos(2x)的圖象向左平移個單位長度后,得到函數(shù)g(x)的圖象,則下列結論中正確的是_____.(填所有正確結論的序號)①g(x)的最小正周期為4π;②g(x)在區(qū)間[0,]上單調遞減;③g(x)圖象的一條對稱軸為x;④g(x)圖象的一個對稱中心為(,0).12.在中,角的對邊分別為,若,則角________.13.按照如圖所示的程序框圖,若輸入的x值依次為,0,1,運行后,輸出的y值依次為,,,則________.14.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.15.若實數(shù),滿足,則的最小值為________.16.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在直三棱柱中,,,,點N為AB中點,點M在邊AB上.(1)當點M為AB中點時,求證:平面;(2)試確定點M的位置,使得平面.18.在中,角對應的邊分別是,且.(1)求的周長;(2)求的值.19.隨著高校自主招生活動的持續(xù)開展,我市高中生掀起了參與數(shù)學興趣小組的熱潮.為調查我市高中生對數(shù)學學習的喜好程度,從甲、乙兩所高中各自隨機抽取了40名學生,記錄他們在一周內平均每天學習數(shù)學的時間,并將其分成了6個區(qū)間:、、、、、,整理得到如下頻率分布直方圖:(1)試估計甲高中學生一周內平均每天學習數(shù)學的時間的中位數(shù)甲(精確到0.01);(2)判斷從甲、乙兩所高中各自隨機抽取的40名學生一周內平均每天學習數(shù)學的時間的平均值甲與乙及方差甲與乙的大小關系(只需寫出結論),并計算其中的甲、甲(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).20.在中,內角,,的對邊分別為,已知.(1)求角的大?。唬?)若,且,求的面積.21.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大?。?/p>

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由幾何體的三視圖得該幾何體是一個底面半徑,高的扣在平面上的半圓柱,由此能求出該幾何體的體積【詳解】由幾何體的三視圖得:

該幾何體是一個底面半徑,高的放在平面上的半圓柱,如圖,

故該幾何體的體積為:故選:D【點睛】本題考查幾何體的體積的求法,考查幾何體的三視圖等基礎知識,考查推理能力與計算能力,是中檔題.2、B【解析】

通過函數(shù)圖像可計算出三角函數(shù)的周期,從而求得w,再代入一個最低點即可得到答案.【詳解】,,又,,,又,,故選B.【點睛】本題主要考查三角函數(shù)的圖像,通過周期求得w是解決此類問題的關鍵.3、C【解析】

先利用正弦定理邊角互化思想得出,再利余弦定理以及條件得出可得出是等邊三角形,于此可得出的值.【詳解】,由正弦定理邊角互化的思想得,,,,則.、、成等比數(shù)列,則,由余弦定理得,化簡得,,則是等邊三角形,,故選C.【點睛】本題考查正弦定理邊角互化思想的應用,考查余弦定理的應用,解題時應根據(jù)等式結構以及已知元素類型合理選擇正弦定理與余弦定理求解,考查計算能力,屬于中等題.4、D【解析】

由垂直,可得,即可求出的值.【詳解】直線與直線垂直,,解得或.故選D.【點睛】對于直線:和直線:,①;②.5、D【解析】

根據(jù)等差數(shù)列片段和成等差數(shù)列,可得到,代入求得結果.【詳解】由等差數(shù)列性質知:,,,成等差數(shù)列,即:本題正確選項:【點睛】本題考查等差數(shù)列片段和性質的應用,關鍵是根據(jù)片段和成等差數(shù)列得到項之間的關系,屬于基礎題.6、C【解析】

根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關鍵,意在考查學生的計算能力.7、C【解析】

畫出長方體,按照選項的內容在長方體中找到相應的情況,即可得到答案【詳解】對于選項A,在長方體中,任何一條棱都和它相對的兩個平面平行,但這兩個平面相交,所以A不正確;對于選項B,若,分別是長方體的上、下底面,在下底面所在平面中任選一條直線,都有,但,所以B不正確;對于選項D,在長方體中,令下底面為,左邊側面為,此時,在右邊側面中取一條對角線,則,但與不垂直,所以D不正確;對于選項C,設平面,且,因為,所以,又,所以,又,所以,所以C正確.【點睛】本題考查直線與平面的位置關系,屬于簡單題8、A【解析】

試題分析:,故選A.9、C【解析】

直接利用扇形弧長公式求解即可得到結果.【詳解】由扇形弧長公式得:本題正確選項:【點睛】本題考查扇形弧長公式的應用,屬于基礎題.10、D【解析】本題主要考查不等關系.已知,所以,所以,故.故選二、填空題:本大題共6小題,每小題5分,共30分。11、②④.【解析】

利用函數(shù)的圖象的變換規(guī)律求得的解析式,再利用三角函數(shù)的周期性、單調性、圖象的對稱性,即可求解,得到答案.【詳解】由題意,將函數(shù)的圖象向左平移個單位長度后,得到的圖象,則函數(shù)的最小正周期為,所以①錯誤的;當時,,故在區(qū)間單調遞減,所以②正確;當時,,則不是函數(shù)的對稱軸,所以③錯誤;當時,,則是函數(shù)的對稱中心,所以④正確;所以結論正確的有②④.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質的判定,其中解答熟記三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質,準確判定是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.12、【解析】

根據(jù)得,利用余弦定理即可得解.【詳解】由題:,,,由余弦定理可得:,.故答案為:【點睛】此題考查根據(jù)余弦定理求解三角形的內角,關鍵在于熟練掌握余弦定理公式,準確計算求解.13、5【解析】

根據(jù)程序框圖依次計算出、、后即可得解.【詳解】由程序框圖可知,;,;,.所以.故答案為:.【點睛】本題考查了程序框圖的應用,屬于基礎題.14、【解析】試題分析:由題意可得,∴,解得0<q<1考點:等比數(shù)列的性質15、【解析】

由題意可得=≥2=2,由不等式的性質變形可得.【詳解】∵正實數(shù)a,b滿足,∴=≥2=2,∴ab≥2當且僅當=即a=且b=2時取等號.故答案為2.【點睛】本題考查基本不等式求最值,涉及不等式的性質,屬基礎題.16、128【解析】

觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【點睛】本題考查數(shù)列在數(shù)陣中的應用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關系,同時注意每一行開始的數(shù)據(jù)或結尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)推導出,由此能證明平面.(2)當點是中點時,推導出,,從而平面,進而,推導出△,從而,由此能證明平面.【詳解】(1)在直三棱柱中,點為中點,為中點,,平面,平面,平面.(2)當點是中點時,使得平面.證明如下:在直三棱柱中,,,,點為中點,點是中點,,,,平面,平面,,,,,△,,,,,平面.【點睛】本題考查線面平行、線面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.18、(1)(2)【解析】

(1)由余弦定理求得,從而得周長;(2)由余弦定理求得,由平方關系得,同理得,然后由兩角差的余弦公式得結論.【詳解】解:(1)在中,,由余弦定理,得,即,∴的周長為(2)由,得,由,得,于是.【點睛】本題考查余弦定理和兩角差的余弦公式,考查同角間的三角函數(shù)關系式,屬于基礎題.19、(1);(2)甲乙,甲乙,甲=,甲=【解析】

(1)根據(jù)每組小矩形的面積確定中位數(shù)所在區(qū)間,即可求解;(2)根據(jù)直方圖特征即可判定甲乙,甲乙,根據(jù)平均數(shù)和方差的公式分別計算求值.【詳解】(1)由甲高中頻率分布直方圖可得:第一組頻率0.1,第二組頻率0.2,第三組頻率0.3,所以中位數(shù)在第三組,甲;(2)根據(jù)兩個頻率分布直方圖可得:甲乙,甲乙甲=甲=【點睛】此題考查頻率分布直方圖,根據(jù)兩組直方圖特征判斷中位數(shù)和方差的大小關系,求中位數(shù),平均數(shù)和方差,關鍵在于熟練掌握相關數(shù)據(jù)的求法,準確計算得解.20、(1);(2).【解析】

(1)由二倍角公式得,求得則角可求;(2),得,由正弦定理得,再結合余弦定理得則面積可求【詳解】(1)因為,所以,解得,因為,所以;(2)因為,所以,由正弦定理得所以,由余弦定理,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論