版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江蘇省睢寧高級中學高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知2弧度的圓心角所對的弧長為2,則這個圓心角所對的弦長是()A. B. C. D.2.莖葉圖記錄了甲、乙兩組各6名學生在一次數(shù)學測試中的成績(單位:分).已知甲組數(shù)據(jù)的眾數(shù)為124,乙組數(shù)據(jù)的平均數(shù)即為甲組數(shù)據(jù)的中位數(shù),則,的值分別為A. B.C. D.3.圓與直線的位置關(guān)系是()A.相交 B.相切 C.相離 D.直線過圓心4.下列各角中與角終邊相同的角是A. B. C. D.5.一元二次不等式的解集為()A. B.C. D.6.在中,,且,若,則()A.2 B.1 C. D.7.已知集合,,則()A. B. C. D.8.已知點A(-1,1)和圓C:(x﹣5)2+(y﹣7)2=4,一束光線從A經(jīng)x軸反射到圓C上的最短路程是A.6-2 B.8 C.4 D.109.已知點均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.10.在直角坐標系中,直線的傾斜角是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知正三角形的邊長是2,點為邊上的高所在直線上的任意一點,為射線上一點,且.則的取值范圍是____12.把二進制數(shù)1111(2)化為十進制數(shù)是______.13.設等比數(shù)列滿足a1+a2=–1,a1–a3=–3,則a4=___________.14.若滿足約束條件,的最小值為,則________.15.已知二面角為60°,動點P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點之間距離的最小值為.16.已知函數(shù),下列結(jié)論中:函數(shù)關(guān)于對稱;函數(shù)關(guān)于對稱;函數(shù)在是增函數(shù),將的圖象向右平移可得到的圖象.其中正確的結(jié)論序號為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,函數(shù),且當,時,的最小值為.(1)求的值,并求的單調(diào)遞增區(qū)間;(2)先將函數(shù)的圖象上所有點的橫坐標縮小到原來的倍(縱坐標不變),再將所得圖象向右平移個單位,得到函數(shù)的圖象,求方程在區(qū)間上所有根之和.18.已知等差數(shù)列滿足,前項和.(1)求的通項公式(2)設等比數(shù)列滿足,,求的通項公式及的前項和.19.已知平面向量(1)若,求;(2)若,求與夾角的余弦值.20.如圖,在四棱柱中,側(cè)棱底面,,,,,且點和分別為和的中點.(1)求證:平面;(2)求二面角的正弦值;(3)設為棱上的點,若直線和平面所成角的正弦值為,求線段的長.21.已知圓圓心坐標為點為坐標原點,軸、軸被圓截得的弦分別為、.(1)證明:的面積為定值;(2)設直線與圓交于兩點,若,求圓的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由弧長公式求出圓半徑,再在直角三角形中求解.【詳解】,如圖,設是中點,則,,,∴.故選D.【點睛】本題考查扇形弧長公式,在求弦長時,常在直角三角形中求解.2、A【解析】
根據(jù)眾數(shù)的概念可確定;根據(jù)平均數(shù)的計算方法可構(gòu)造方程求得.【詳解】甲組數(shù)據(jù)眾數(shù)為甲組數(shù)據(jù)的中位數(shù)為乙組數(shù)據(jù)的平均數(shù)為:,解得:本題正確選項:【點睛】本題考查莖葉圖中眾數(shù)、中位數(shù)、平均數(shù)的求解,屬于基礎(chǔ)題.3、B【解析】
求出圓心到直線的距離與半徑比較.【詳解】圓的圓心是,半徑為1,圓心到直線即的距離為,直線與圓相切.故選:B.【點睛】本題考查直線與圓人位置關(guān)系,判斷方法是:利用圓心到直線的距離與半徑的關(guān)系判斷.4、B【解析】
根據(jù)終邊相同角的概念,即可判斷出結(jié)果.【詳解】因為,所以與是終邊相同的角.故選B【點睛】本題主要考查終邊相同的角,熟記有關(guān)概念即可,屬于基礎(chǔ)題型.5、C【解析】
根據(jù)一元二次不等式的解法,即可求得不等式的解集,得到答案.【詳解】由題意,不等式,即或,解得,即不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.6、A【解析】
取的中點,連接,根據(jù),即可得解.【詳解】取的中點,連接,在中,,且,所以,.故選:A【點睛】此題考查求向量的數(shù)量積,涉及平面向量的線性運算,根據(jù)數(shù)量積的幾何意義求解,可以簡化計算.7、D【解析】依題意,故.8、B【解析】
點A(﹣1,1)關(guān)于x軸的對稱點B(﹣1,﹣1)在反射光線上,當反射光線過圓心時,光線從點A經(jīng)x軸反射到圓周C的路程最短,最短為|BC|﹣R.【詳解】由反射定律得點A(﹣1,1)關(guān)于x軸的對稱點B(﹣1,﹣1)在反射光線上,當反射光線過圓心時,最短距離為|BC|﹣R=﹣2=10﹣2=1,故光線從點A經(jīng)x軸反射到圓周C的最短路程為1.故選B.【點睛】本題考查光線的反射定律的應用,以及兩點間的距離公式的應用.9、A【解析】
設是的外心,則三棱錐體積最大時,平面,球心在上.由此可計算球半徑.【詳解】如圖,設是的外心,則三棱錐體積最大時,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設球半徑為,則由得,解得,∴球體積為.故選A.【點睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.10、A【解析】
先根據(jù)直線的方程,求出它的斜率,可得它的傾斜角.【詳解】在直角坐標系中,直線的斜率為,等于傾斜角的正切值,故直線的傾斜角是,故選.【點睛】本題主要考查直線的傾斜角和斜率的求法.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
以AB所在的直線為x軸,以AB的中點為坐標原點,AB的垂線為y軸,建立平面直角坐標系,求出A.C,P,Q的坐標,運用平面向量的坐標表示和性質(zhì),求出的表達式,利用判別式法求出的取值范圍.【詳解】以AB所在的直線為x軸,以AB的中點為坐標原點,AB的垂線為y軸,建立平面直角坐標系,如下圖所示:,設,,設,可得,由,可得即,,令,可得,當時,成立,當時,,即,,即,所以的取值范圍是.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)和運算,考查了平面向量模的取值范圍,構(gòu)造函數(shù),利用判別式法求函數(shù)的最值是解題的關(guān)鍵.12、.【解析】
由二進制數(shù)的定義可將化為十進制數(shù).【詳解】由二進制數(shù)的定義可得,故答案為:.【點睛】本題考查二進制數(shù)化十進制數(shù),考查二進制數(shù)的定義,考查計算能力,屬于基礎(chǔ)題.13、-8【解析】設等比數(shù)列的公比為,很明顯,結(jié)合等比數(shù)列的通項公式和題意可得方程組:,由可得:,代入①可得,由等比數(shù)列的通項公式可得.【名師點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程.14、4【解析】
由約束條件得到可行域,取最小值時在軸截距最小,通過直線平移可知過時,取最小值;求出點坐標,代入構(gòu)造出方程求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:取最小值時,即在軸截距最小平移直線可知,當過點時,在軸截距最小由得:,解得:本題正確結(jié)果:【點睛】本題考查現(xiàn)行規(guī)劃中根據(jù)最值求解參數(shù)的問題,關(guān)鍵是能夠明確最值取得的點,屬于??碱}型.15、【解析】
如圖
分別作于A,于C,于B,于D,
連CQ,BD則,,
又
當且僅當,即點A與點P重合時取最小值.
故答案選C.【點睛】16、【解析】
把化成的型式即可。【詳解】由題意得所以對稱軸為,對,當時,對稱中心為,對。的增區(qū)間為,對向右平移得。錯【點睛】本題考查三角函數(shù)的性質(zhì),三角函數(shù)變換,意在考查學生對三角函數(shù)的圖像與性質(zhì)的掌握情況。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)運用向量的數(shù)量積運算和輔助角公式化簡,求解和求其單調(diào)區(qū)間;(2)根據(jù)圖像的平移和函數(shù)的對稱軸求解.【詳解】(1)函數(shù),得.即,由題意得,得所以,函數(shù)的單調(diào)增區(qū)間為.(2)由題意,,又,得解得:或即或或故所有根之和為.【點睛】本題考查正弦型函數(shù)的值域、單調(diào)性和對稱性,屬于基礎(chǔ)題.18、(1);(2),.【解析】
(1)設的公差為,則由已知條件得,.化簡得解得故通項公式,即.(2)由(1)得.設的公比為,則,從而.故的前項和.19、(1)(2)【解析】
(1)由題可得,解出,,進而得出答案.(2)由題可得,,再由計算得出答案,【詳解】因為,所以,即解得所以(2)若,則所以,,,所以【點睛】本題主要考查的向量的模以及數(shù)量積,屬于簡單題.20、(1)證明見解析;(2);(3)【解析】
如圖,以為原點建立空間直角坐標系,依題意可得,又因為分別為和的中點,得.(Ⅰ)證明:依題意,可得為平面的一個法向量,,由此可得,,又因為直線平面,所以平面(Ⅱ),設為平面的法向量,則,即,不妨設,可得,設為平面的一個法向量,則,又,得,不妨設,可得因此有,于是,所以二面角的正弦值為.(Ⅲ)依題意,可設,其中,則,從而,又為平面的一個法向量,由已知得,整理得,又因為,解得,所以線段的長為.考點:直線和平面平行和垂直的判定與性質(zhì),二面角、直線與平面所成的角,空間向量的應用.21、(1)證明見解析;(2).【解析】
(1)利用幾何條件可知,為直角三角形,且圓過原點,所以得知三角形兩直角邊邊長,求得面積;(2)由及原點O在圓上,知OCMN,所以,求出的值,再利用直線與圓的位置關(guān)系判斷檢驗,符合題意的解,最后寫出圓的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物聯(lián)網(wǎng)設備接入與管理服務合同
- 學校圖書館數(shù)字化資源建設與管理合同
- 人工智能語音助手開發(fā)及服務合同
- 2024年度醫(yī)療用品供應協(xié)議范例
- 2024新住宅買賣協(xié)議封面樣本
- 搪瓷制品的花紋與紋理設計考核試卷
- 體育場排球場網(wǎng)布質(zhì)量檢測方法考核試卷
- 《結(jié)構(gòu)化環(huán)境無人駕駛物流運輸車運動規(guī)劃研究》
- 2024年瓶蓋銷售協(xié)議范本
- 《具有形狀記憶功能杜仲膠復合材料的制備與性能研究》
- 重癥超聲在ICU的應用-課件
- NB∕T 10739-2021 井工煤礦輔助運輸安全管理規(guī)范
- 2022年中國鹽業(yè)集團有限公司校園招聘筆試試題及答案解析
- 球墨鑄鐵管道施工的學習課件
- 2022年小學六年級畢業(yè)監(jiān)測科學素養(yǎng)測試題試卷 (含答題卡)
- 部編二年級語文查字典練習題
- 新人教版七年級英語上冊期中復習課件
- 鉭鈮冶金課件
- 10KV供配電工程施工組織設計方案
- DBJ50∕T-044-2019 園林種植土壤質(zhì)量標準數(shù)據(jù)
- 應屆生學歷學位證明模板
評論
0/150
提交評論